On Achieving Weighted Service Differentiation: An End-to-End Perspective

Hung-Yun Hsieh, Kyu-Han Kim, and Raghupathy Sivakumar GNAN Research Group School of Electrical and Computer Engineering Georgia Institute of Technology June 4, 2003

Scope and Goals

- Weighted rate differentiation
 - A user (flow) with weight w is provided w times the data rate of one with *unit* weight under the same network conditions (on the same path)
- TCP semantics
 - Reliable and in-sequence delivery
- TCP friendliness*
 - A flow with weight w = sum of w default TCP flows
- End-to-end approach
 - Does not rely on infrastructure support for resource provisioning at the routers

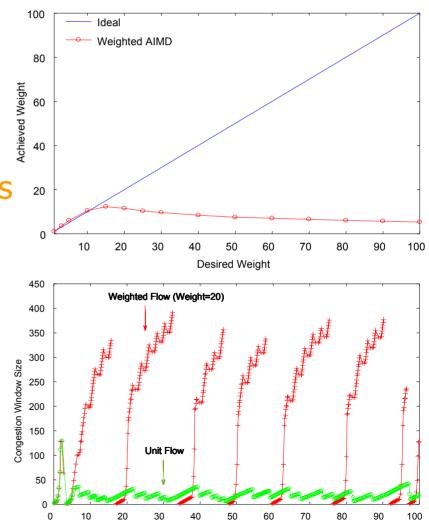
Existing Solutions

- Change the AIMD parameters (α, β) of the default TCP flow
 - Weighted AIMD [Crowcroft 98, Nandagopal 00]

•
$$(\alpha, \beta) \rightarrow (\alpha \times f(w), \beta/g(w))$$

- To achieve *w* times throughput
 - Assuming TCP stays in congestion avoidance

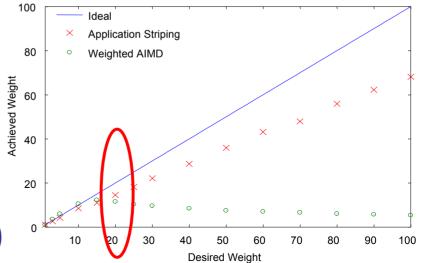
$$f(w) \times [2g(w) - \beta] = w^2(2-\beta)$$


- $f(w) = w^2, g(w) = 1$ [bursty]
- f(w) = 1, $g(w) \propto w^2$ [unresponsive]

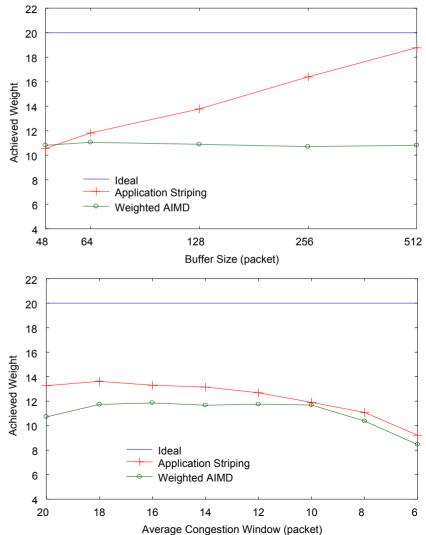
 $f(w) \propto w, g(w) \propto w \text{[Multcp]}$

Performance of Weighted AIMD

- Scalability


 Maximum achievable weight is limited to a small value
 [Crowcroft 98, Gevros 99, Nandagopal 00]
- Burstiness
 - Packet losses
 - Timeouts bring WAIMD out of the weighted region

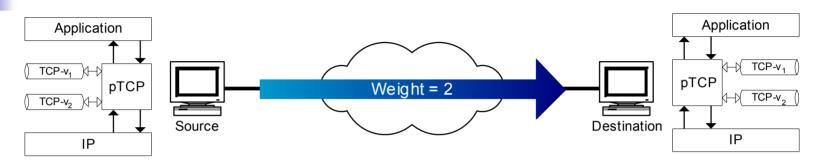
Time (sec)


An Alternative Approach

- Use multiple TCP sockets for achieving higher throughput
 - Application striping technique [Allman 96, Sivakumar 00, Hacker 02]
 - Offline reassembly (after all parts are downloaded)
- In-sequence delivery
 - Sending application: round-robin write
 - Receiving application: in-sequence read
- ✓ Multiple states (TCBs)

Limiting Factors

- Resequencing buffer
 Probability of stalling increases with weight
 - Buffer requirement increases with weight
- Congestion window
 - Fair share per socket decreases with weight
 - Timeouts
- Head-of-line blocking



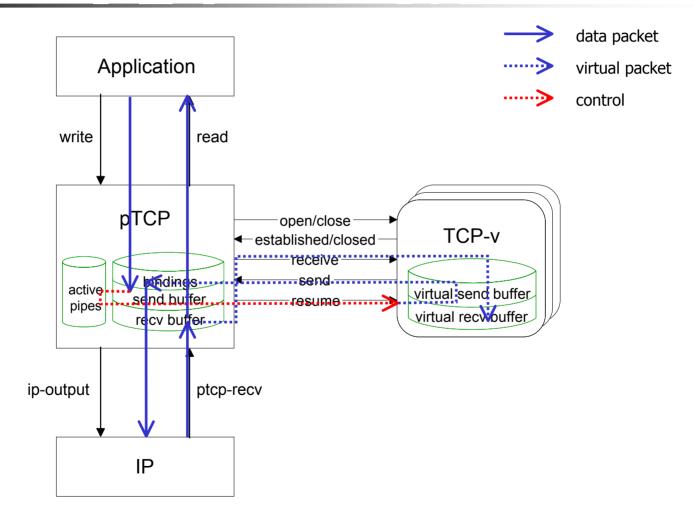
pTCP Protocol

- A multi-state transport layer protocol for achieving bandwidth aggregation on a multihomed mobile host with heterogeneous wireless interfaces [Hsieh 02]
- Addressing HOL blocking
 - Bandwidth differential
 - Delay differential
 - Bandwidth fluctuations
 - Blackouts

Mechanisms used in pTCP can be tailored for achieving weighted rate differentiation

pTCP Key Design Elements

- Decoupling of functionalities
 - TCP-v: virtual packet;
 pTCP: data packet
 - TCP-v: how much to send; pTCP: what to send
- Congestion window based striping
 - pTCP *binds* a data packet to a pipe only when the TCP-v's congestion window has space
 - No need to explicitly estimate bandwidth available in each pipe for proportional striping

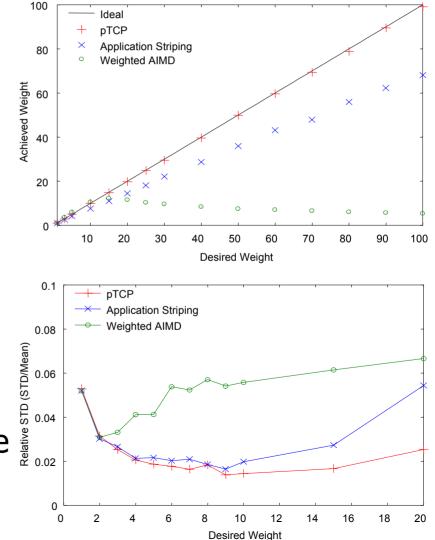

Addressing HOL Blocking (1)

- Dynamic reassignment (re-striping)
 - Avoids packets being held up in one pipe
 - Lost packets detected by individual TCP-v pipes are *unbound* for reassignment to the next available pipe
 - pTCP can detect losses much earlier than individual TCP-v pipes (via out-of-order arrivals)
 - Loss detection at pTCP can remain valid even when fast retransmit at TCP-v fails (e.g. for large weights)
- Retransmission in a TCP-v pipe does not necessarily lead to retransmission of the data

Addressing HOL Blocking (2)

- Redundant striping
 - Avoids timeouts in individual pipes from stalling the connection
 - A TCP-v pipe is assigned a data packet *already bound* to another pipe
 - Loss of a retransmitted packet in TCP(-v) is detected only through a timeout
 - Redundant striping of retransmitted packets avoids the potential HOL blocking in pTCP
- Packet duplicates at the receiving end can be handled using the pTCP sequence number

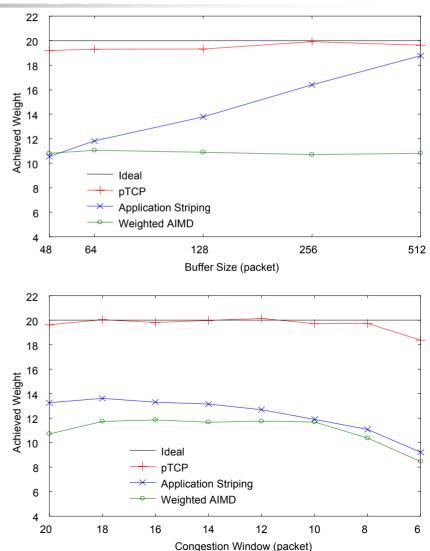
pTCP Operations


Simulation Results (1)

Throughput

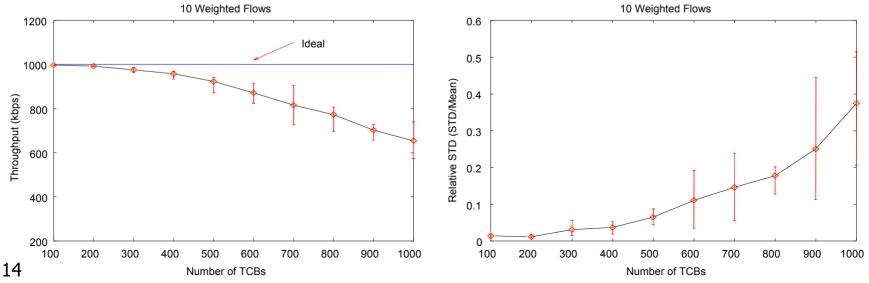
- 1 weighted flow + 9 unit flows
- Achieved weight: throughput ratio

- 10 weighted flows
- Unfairness index: coefficient of variance



Simulation Results (2)

- Resequencing buffer
 - Congestion window based striping can avoid disproportional striping



 Re-striping and redundant striping effectively avoid HOL blocking due to packet losses

Scalability Limit

- What is the maximum achievable weight?
- $𝔅 W_{max}$ = η/6, η: network storage
 - Network storage = BDP + network buffer
- cwnd ≥ 4 to trigger fast retransmit
 - 6 packets per TCP flow [Morris 00]

Summary

- Single state approaches such as weighted AIMD fail to achieve WRD for large weights due to burstiness and timeouts
- Application striping approaches maintain multiple states, but still fail due to head-ofline blocking
- pTCP achieves weighted rate differentiation with scalability to large weights
- pTCP can support multiple congestion control schemes for use with different QoS models

http://www.ece.gatech.edu/research/GNAN