
On Achieving Weighted Service Differentiation:
An End-to-End Perspective ?

Hung-Yun Hsieh, Kyu-Han Kim, and Raghupathy Sivakumar

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia, 30332, USA

{hyhsieh@ece, khkim94@cc, siva@ece}.gatech.edu

Abstract. In this paper, we consider the problem of weighted rate differentiation
using purely end-to-end mechanisms. Existing approaches to solving the problem
involve changes in the AIMD congestion control mechanism used by TCP. How-
ever, such approaches either do not scale well to large weights, or make imprac-
tical assumptions. We use a new multi-state transport layer solution called pTCP
to achieve end-to-end weighted service differentiation. A pTCP flow of weight
w consists of w TCP virtual flows that collectively achieve w times the through-
put of a default TCP flow. pTCP scales significantly better than approaches that
change the AIMD congestion control mechanism of TCP. On the other hand,
pTCP achieves more effective service differentiation and incurs less host over-
head than the simplest form of a multi-state solution using multiple TCP sockets
through application striping. We substantiate our arguments through simulations,
and testbed experiments based on a user-level implementation of pTCP.

1 Introduction

Approaches to achieve relative service differentiation are inherently much simpler to
deploy and manage. Hence, the paradigm of relative service differentiation has gained
considerable attention over the last few years [1, 2]. In this work, we consider the spe-
cific problem of achieving weighted rate differentiation using purely end-to-end mech-
anisms. A solution to such a problem will have the added benefit of supporting scalable
QoS without any infrastructure change.

An important instantiation of such an end-to-end weighted rate differentiation so-
lution lies in the incorporation of weighted fairness within the TCP transport protocol
design. Essentially, under a weighted fairness model, a TCP flow of weight w is to
be provided with w times the throughput of a default TCP flow (with unit weight). In
this context, several related works have been proposed to modify the AIMD (additive
increase, multiplicative decrease) congestion control of TCP for achieving the desired
throughput. For example, MulTCP [3] changes the AIMD parameters according to the
weight of the flow. While such a weighted AIMD (WAIMD) scheme requires minimal
changes to TCP, simulation and testbed results [3, 4] have shown that WAIMD can pro-
vide weighted rate differentiation only for a small range of weights (less than 10). For

? This work was funded in part by NSF grants ANI-0117840 and ECS-0225497, Motorola,
Yamacraw, and the Georgia Tech Broadband Institute.

larger weights, it suffers from frequent packet losses, and does not provide consistent
service differentiation. TCP-LASD [5] is an approach proposed to improve the perfor-
mance of WAIMD by adapting the AIMD parameters to the packet loss rate as well
as the flow weight. Although TCP-LASD exhibits higher scalability in terms of weight
(up to 100), it relies on accurate loss estimation that is difficult to achieve using purely
end-to-end schemes without any network support [5].

The fact that WAIMD maintains only one TCB (TCP control block) [6] per connec-
tion makes it vulnerable to deviation from the ideal behavior under severe loss condi-
tions. Specifically, given an identical distribution of packet losses, a connection main-
taining only one TCB will be impacted by timeouts far more than one that maintains
multiple TCBs. When timeouts occur in the former, the whole connection will stall un-
til the loss is recovered, but in the latter, only the affected TCB(s) will stall. While an
application-striping approach using multiple TCP sockets (and hence multiple TCBs)
has been studied and experimented in a different context [7–10], it has thus far not
been considered as a potential solution for achieving weighted service differentiation
due to the following reasons: (i) The throughput gain is not consistently proportional
to the degree of parallelism (number of sockets used) even for a small number of sock-
ets (around 10). Hence it is difficult to decide (in a distributed fashion) the number of
parallel sockets to use for achieving the desired weighted fairness under any given net-
work condition. (ii) Striping is usually done by dividing the application data into same-
sized partitions equal to the number of sockets before transmission commences. Each
partition of data is therefore transferred asynchronously by the corresponding streams
(sockets) and is reassembled after all transmissions are complete (offline reassembly).
This approach thus cannot be used by applications that require strict TCP semantics
including in-sequence data delivery. The added complexity imposed on applications to
perform the sophisticated striping techniques (e.g. data partition and reassembly) also
renders this approach less desirable.

In this paper, we first study the performance of an application-striping approach
when used as a solution to achieve weighted service differentiation. We show that it
fares better than WAIMD in terms of scalability to increasing weights, but still does not
achieve the ideal expected weighted service differentiation beyond small weight val-
ues. We provide insights into the performance limitations of application striping. We
then use a multi-state transport layer protocol called pTCP (parallel TCP) that main-
tains multiple TCBs per connection but avoids the pitfalls of application striping, for
achieving the desired weighted differentiation. pTCP was originally proposed in [11]
to aggregate bandwidths on a mobile host with multiple network interfaces. We tailor
the design of pTCP for the specific goal of achieving weighted service differentiation.
A pTCP connection of weight w consists of w mini-flows called TCP-v (TCP-virtual)
flows. TCP-v is a simple variation of default TCP that employs the same congestion
control mechanisms, but does not deal with the actual application data. A central en-
tity called the pTCP engine manages the send and receive socket buffers, and handles
reliability and flow control for the pTCP connection. Through both simulation results
and real-life evaluation of a user-level implementation of pTCP, we show that pTCP
is able to achieve effective weighted service differentiation, exhibiting a much higher
scalability to the range of weights than both WAIMD and application striping.

The rest of this paper is organized as follows: In Section 2 we explain the goals
and scope of this paper, and in Section 3 we discuss related work that uses end-to-end
mechanisms to achieve weighted service differentiation. In Section 4 we present the
pTCP design and protocol. Section 5 presents simulation and prototype implementation
results showing the performance of pTCP. Section 6 discusses some critical issues in
the pTCP design, and finally Section 7 concludes the paper.

2 Goals and Scope

– Weighted Rate Differentiation: The DiffServ framework supports absolute ser-
vice differentiation with guarantees on absolute performance levels, as well as rel-
ative service differentiation with assurances for relative quality ordering between
classes [1, 12]. Many approaches and architectures have been proposed to achieve
relative service differentiation for different service parameters and applications [2,
5, 13–15]. It is shown in [1] that relative service differentiation requires a “tuning
knob” to adjust the relative QoS spacing between classes, and hence the propor-
tional differentiation model, where the performance experienced by a certain class
is proportional to the service differentiation parameters, stands out for its ability to
achieve controllable and predictable service differentiation. The goal of this paper
is to provide such a “tuning knob” for achieving relative service differentiation. We
consider data rate differentiation and hence a user (a TCP flow in particular) with
weight or differentiation parameter w is to be provided w times the data rate of a
user with unit weight.

– End-to-End Approach: We aim to provide the weighted rate differentiation using
purely end-to-end mechanisms. While a complete model for providing relative ser-
vice differentiation requires appropriate pricing and policing enforced at the edge
routers, we do not rely on network support to achieve service differentiation. No
assumptions are made in terms of network support except for a fair dropping mech-
anism such as RED. Note that the fair dropping requirement is also essential for
TCP to achieve the default (non-weighted) proportional fairness [16–18].

– TCP Friendliness: We define TCP friendliness in the context of weighted service
differentiation as follows: A weighted TCP flow of weight w will receive exactly the
throughput that would have been enjoyed by w default TCP flows (which replace
the weighted flow under the same network condition) in total. Note that given our
TCP friendliness goal, the behavior of a TCP flow with weight w should be exactly
that of an aggregation of w unit TCP flows. This in turn means that the weighted
flow will still exhibit any undesirable property that TCP might have (such as RTT
bias). While it is not the goal of this paper to change the behavior of a default TCP
flow, any improved congestion control mechanism used by TCP should be easily
incorporated by the weighted flow to achieve the desired service differentiation.

– TCP Semantics: We limit the scope of this paper to applications that require the
end-to-end semantics of TCP in terms of reliability and in-sequence delivery. The
conventional application-striping approach [7, 8] that partitions application data
and transfers different portions through different TCP connections thus falls out-
side the scope of this paper, since it requires the receiving application to perform
offline processing to reassemble the collected data portions.

3 Motivation

There are two broad classes of approaches that can be used to achieve end-to-end
weighted rate differentiation: (i) Weighted AIMD: A single-state approach that uses a
single TCP flow with a modified AIMD congestion control mechanism, and (ii) Appli-
cation Striping: A multi-state approach that stripes across multiple default TCP sockets.
The first class of approaches has been studied in quite some detail by related work [3,
5]. However, the latter class of approaches, although proposed in other contexts [7, 8],
has not been investigated as a viable option for achieving weighted rate differentiation.
In the rest of the section, we first outline the reasons for the non-scalability of vanilla
WAIMD, and discuss the limitations of a variant called TCP-LASD. We then study the
performance of application striping in the context of weighted rate differentiation, and
provide insights into its benefits and limitations.

��� ���
�����
	��
�
�����������

� �

���

���

� �

�������! #"
�#��$�"

�%���&�' �"
����$�"

(�)+*,(.-

Fig. 1. Network Topology (Single Link)

We use simulation results based on the ns-2 network simulator [19] to illustrate
and substantiate our arguments during the discussion. The topology used consists of a
single link topology with 2 backbone routers and 20 access nodes as shown in Fig. 1
The end-to-end path traversed by the 10 TCP flows (flow i originates from Si and ter-
minates at Di) has bottleneck capacity of 10Mbps and base round-trip time of 240ms.
The backbone routers use the RED queue with buffer size of 320KB (approximately the
bandwidth-delay product of the end-to-end path), and the access nodes use the DropTail
queue. f 0 is a weighted flow with weight w, and f 1 through f 9 are regular TCP flows
with unit weight. We use TCP-SACK for all TCP flows.

3.1 Limitations of Weighted AIMD

Ideally, the throughput of a weighted flow with weight w should be w times that of
the average throughput enjoyed by the unit flows. However, it is clear from Fig. 2(a)
that1 WAIMD does not scale beyond a weight of even 10. The reasons for such poor
performance stem from the following two properties of WAIMD:

– Burstiness: For a flow with weight w, WAIMD modifies the increase (α) and de-
crease (β) parameters in AIMD to be αw, and β

w respectively. It is clear that the

1 The performance of pTCP shown in Fig. 2 and Fig. 3 will be discussed in Section 5.1.

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

A
ch

ie
ve

d
W

ei
gh

t

Desired Weight

9 TCP Flows + 1 Weighted Flow (Buffer=128)

Ideal
pTCP
Application Striping
Weighted AIMD

(a) Scalability with weight

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80 90 100

C
on

ge
st

io
n

W
in

do
w

 S
iz

e

Time (sec)

Congestion Window Progression (Weighted AIMD)

Weighted Flow (Weight=20)

Unit Flow

(b) Congestion window progression

Fig. 2. Limitations of Weighted AIMD

congestion window progression for a weighted flow becomes more bursty with in-
creasing weights. Burstiness induces packet losses due to queue overflows, which
eventually result in timeouts if sufficiently large number of packets are lost from
within one congestion window, or a retransmitted packet is lost. It is shown in [5]
that the loss probability at a bottleneck link increases proportional to the square of
the sum of weights of all contending flows. While the SACK option can ameliorate
the impact of losses to some extent, due to the limited number of SACK blocks
available in the TCP header, its benefits do not scale with the amount of losses.
Hence, WAIMD becomes more bursty with increasing weights, and consequently
experiences increasing chances of timeouts. Fig. 2(b) presents the congestion win-
dow evolution of the WAIMD flow. The burstiness is evident through the steep
increases in the congestion window. Moreover, as the figure shows, 8 timeouts oc-
cur during the period of 100 seconds, substantiating our argument that the bursty
nature of the traffic induces frequent timeouts in WAIMD.

– Single State: Timeouts in general degrade TCP’s throughput performance. How-
ever, they drastically impact WAIMD’s performance because of its single state strat-
egy. Specifically, WAIMD maintains only one TCB per connection (just as TCP).
Hence, when a timeout occurs, irrespective of the weight w of a flow, the flow is
completely shutdown. In contrast, if the flow were really replaced with w default
TCP flows, even if one of the flows experiences a timeout, the remaining flows
would have been able to continue without interruption. However, WAIMD cannot
emulate such a behavior because of its single state design.

While WAIMD cannot achieve the desired service differentiation due to the inability
to handle packet losses induced by its burstiness, in [5] the authors propose a loss-
adaptive variant of WAIMD, called TCP-LASD, that adapts its increase and decrease
parameters as a function of the loss rate (p) observed–e.g., by setting α ∝ 1

p , or β ∝ p.
They show that TCP-LASD can scale considerably better than WAIMD if accurate
loss rate information is available at all sources. However, such an assumption, even
the authors agree, is not pragmatic in a distributed environment. This is due to the fact
that even when network routers attempt to provide a fair dropping probability, they
merely strive to achieve a fair expected loss probability for all packets in the long term

(several round-trip times), and do not try to reduce the variance in the loss probabilities
accorded to different flows. However, the fact that TCP-LASD relies on accurate loss
estimation to drive the congestion window progression on a per-packet basis, makes
its performance sensitive to even short-term loss rate estimation. While the authors
argue that the problem can be offset with accurate loss rate information feedback from
the network, this solution deviates from the scope of this paper in terms of providing
service differentiation through purely end-to-end mechanisms.

3.2 Limitations of Application Striping

In the application-striping approach, the application opens multiple sockets to the des-
tination, and explicitly stripes data across the different sockets in an attempt to achieve
better throughput performance. Specifically, we assume that a sending application will
open w socket connections with the destination for achieving the desired weight of w. In
keeping with the TCP semantics of in-sequence delivery, we assume that the receiving
application will read only from the socket buffer that has the next expected application
layer sequence number. The application can perform such an in-sequence read by set-
ting the peek flag in the socket read options (which will prevent the last read packet
from being dequeued from the socket buffer), and performing an actual read only when
it knows that the socket buffer has the next expected packet.2

We observe from Fig. 2(a) that the performance of application striping is consid-
erably better than that of WAIMD. This can be attributed to the multiple-state strategy
adopted by the application-striping approach. In other words, in application striping,
one TCB is maintained per unit TCP flow. Hence, even when one of the flows expe-
riences a timeout, the other flows are still free to continue transmitting. The limiting
factor, however, will be the head-of-line blocking at the receiver-side buffer. Since the
application reads only in-sequence, although flows not experiencing a timeout can con-
tinue transmitting, the receiving application will not read from their socket buffers if
the next in-sequence packet is carried by the timeout-stalled flow. When their buffers
thus become full, the TCP receivers of those flows will advertise a window size of zero
and force the TCP senders to enter the persist mode [20], eventually stalling the flows.

Note from Fig. 2(a) that the performance of application striping deviates from the
ideal behavior for weights larger than 10. We now proceed to evaluate and explain its
performance in terms of the buffer requirement, and when the per-unit-flow fair share
of the bandwidth amounts to a small (and hence timeout-prone) congestion window.
Fig. 3(a) studies the impact of the receive buffer size per TCB on the performance of
the aggregate connection. Since the bandwidth-delay product for each TCB is approx-
imately 24KB, it can be observed that application striping is able to achieve close to
the ideal performance only for significantly large buffers (of 512KB or above for a
weight of 20). In other words, close to twenty times the bandwidth-delay product worth
of buffering is required for each socket for the performance of the application striping

2 While we take such an approach to reduce the application complexity and overhead (in terms of
the resequencing process required), note that any performance degradation due to the apparent
lack of an application resequencing buffer can be compensated by using a large TCP socket
buffer. We do study the impact of the buffer size at the receiving TCPs later in this section.

4

6

8

10

12

14

16

18

20

22

48 64 128 256 512

A
ch

ie
ve

d
W

ei
gh

t

Buffer Size (packet)

9 TCP Flows + 1 Weighted Flow (Weight=20)

Ideal
pTCP
Application Striping
Weighted AIMD

(a) Buffer requirement (per TCB)

4

6

8

10

12

14

16

18

20

22

345678910

A
ch

ie
ve

d
W

ei
gh

t

Link Bandwidth (Mbps)

9 TCP Flows + 1 Weighted Flow (Weight=20)

Ideal
pTCP
Application Striping
Weighted AIMD

(b) Scalability with fair share

Fig. 3. Limitations of Application Striping

to even reach close to the ideal performance (the total amount of buffering used by the
application is the per-socket buffer size times the number of sockets open). Clearly,
application striping fails to scale to large weights, from purely the standpoint of the
amount of memory expended at the receiver. The dependence on such large buffers
is due to the head-of-line blocking otherwise experienced, either (i) when striping is
performed in a manner disproportionate with the instantaneous rate of the individual
TCP flows by an unaware application, or more importantly (ii) when packet losses or
timeouts occur.

Fig. 3(b) studies the impact of the fair share per TCB (unit flow) on the performance
of the aggregate connection. Note that the congestion window size of a TCP flow is
reflective of the fair share available. When the average congestion window size goes
down below a value of six, it has been shown in [21] that TCP is more prone to timeouts
due to the unavailability of sufficient data packets to trigger fast retransmit (3 duplicate
ACKs) after a loss event. When timeouts do occur, although application striping does
not suffer from the single-state problem in WAIMD, it is still vulnerable to the head-of-
line blocking problem due to the filling up of the individual receive buffers (when one or
more flows are recovering from a timeout). The results shown in Fig. 3(b) are obtained
by varying the bandwidth of the bottleneck link from 10Mbps to 3Mbps, which in turn
changes the average congestion window size per TCB (the queue size of RED routers
and the buffer size per TCB scale accordingly). It is clear that while application striping
achieves only about half the desired throughput when the bandwidth is 10Mbps (the
average congestion window size is around 20), its performance degrades even more as
the bandwidth reduces. Hence, application striping fails to scale to large weights when
the available fair share per TCB is such that flows are prone to timeouts.

In summary, although application striping performs better than WAIMD by virtue
of its multiple-state strategy, it still has the following limitations:

– Disproportionate Striping: When the application performs striping without trans-
port layer support, only simple strategies such as round-robin striping, or write
until block can be used. However, such simple strategies can result in the amount
of data assigned to the individual TCP flows being disproportionate with the actual
instantaneous data rates of the TCP flows. This will in turn result in out-of-order

(in terms of application sequence numbers) packets being delivered at the receiver
causing the receive buffers to fill up, and hence potentially resulting in some of the
flows stalling due to buffer limitations.

– Inefficient Buffer Sharing: While disproportionate striping by itself causes the
undesirable phenomenon of more out-of-order delivery at the receiver, the problem
is exacerbated due to the inefficient use of the aggregate receive-side buffer. Similar
to the problem identified in [22], if the instantaneous rates of the individual TCP
flows are different (due to window fluctuations), the constant buffer allocation at
the receive side (per TCP flow) is clearly inefficient as the faster flows require a
larger portion of the aggregate buffer. However, when application striping is used,
no buffer sharing is possible between the individual TCP flows unless an explicit,
dynamic buffer re-allocation technique like the one proposed in [22] is used.

– Timeouts: Due to the multiple independent states (one per unit TCP) maintained,
application striping does not suffer from the drastic consequences that WAIMD
faces upon the occurrence of timeouts. However, as explained earlier, the aggregate
connection is still vulnerable to stalls because the unaffected TCP flows are also
blocked due to unavailability of receive buffer during the course of a timeout. While
over-allocation of buffer can reduce the intensity of the problem, it is clearly not a
scalable solution.

– Application Complexity: Finally, another key drawback of application striping is
the additional complexity that the application has to bear in terms of performing in-
telligent striping, and more importantly performing an elaborate resequencing pro-
cess at the receiver in order to emulate TCP’s in-sequence delivery semantics. Such
a resequencing process will involve the use of application layer sequence numbers,
intelligent reading from the socket buffer, and efficient maintenance of the applica-
tion buffer. Requiring every application that needs weighted service differentiation
to perform the same set of tasks is clearly undesirable.

4 The pTCP Protocol

pTCP is a multi-state transport layer protocol that maintains multiple TCBs per con-
nection [11]. While it was originally proposed for achieving bandwidth aggregation on
multi-homed mobile hosts with heterogeneous network interfaces, we discuss in this
section how the basic principles of pTCP, combined with an appropriate tailoring of
its mechanisms to the problem of weighted service differentiation (WSD), can help in
achieving the desired goal.

4.1 Design Elements

– Multiple States: Similar to application striping, pTCP maintains multiple states for
a weighted connection to avoid the performance degradation exhibited in WAIMD.
A pTCP connection with a weight of w consists of w TCP-v mini-flows (pipes).
The state that each TCP-v maintains (TCB-v) is identical to the TCB maintained
by TCP, except that no real application data is stored or manipulated in the TCB-v.
Note that while pTCP mimics application striping in maintaining multiple TCBs,

the other design elements are targeted toward avoiding the pitfalls in application
striping that we identified in Section 3.2.

– Decoupled Functionality: pTCP is a wrapper around TCP-v, and it controls the
socket send and receive buffers across all TCP-v pipes. Each TCP-v performs con-
gestion control and loss recovery just as regular TCP, but does not have access to
the application data and has no control over which data to send. Any segment trans-
mission by a TCP-v (called “virtual segment” that contains only the TCP header) is
preceded by a function call to pTCP requesting for data binding. Therefore, TCP-v
controls the amount of data that can be sent while pTCP controls which data to send.
A retransmission in the TCP-v pipe does not necessarily mean a retransmission of
the application data. pTCP thus decouples congestion control from reliability. By
virtue of the design of decoupled functionality, pTCP is able to incur significant
less overhead than application striping (we elaborate on this in Section 6.2).

– Congestion Window Based Striping: pTCP does not explicitly perform any band-
width estimation along individual TCP-v pipes to decide the amount of data to dis-
tribute across pipes. Instead, pTCP reuses TCP’s congestion window adaptation to
perform intelligent striping. Specifically, in pTCP the application data is “bound”
(assigned) to a TCP-v pipe for transmission only when there is space in its conges-
tion window (recall that TCP-v controls the amount of data to be sent). As band-
width along each pipe fluctuates, the congestion window of the concerned TCP-v
adapts correspondingly, and the amount of data assigned to the pipe also varies, thus
achieving packet allocation across multiple pipes. Note that when used for achiev-
ing bandwidth aggregation across different paths, the congestion window based
striping needs to be complemented with packet scheduling algorithms to tackle the
delay differential problem (where different paths exhibit RTT mismatches). How-
ever, such a sophisticated and high-overhead packet scheduling algorithm is not
required for achieving WSD since all pipes share the same physical path.

– Dynamic Reassignment: An important design element in pTCP to avoid head-of-
line blocking is the dynamic reassignment of data during congestion. We refer to
the process that unbinds application data bound to a virtual segment, so as to rebind
it to another virtual segment, as restriping. In [11], pTCP uses a restriping strategy
that “blindly” unbinds data bound to virtual segments falling outside the congestion
window of a TCP-v pipe that cuts down its congestion window due to congestion or
probe losses. It then reassigns such unbound data to pipes that request to send more
data. However, for the target environment, a more intelligent restriping strategy that
incurs less overhead can be used. Note that since all segments dispatched by pTCP
traverse the same physical path, pTCP can leverage the FIFO delivery nature of the
single path to perform more intelligent loss detection. Essentially, pTCP can infer
a loss as long as it receives 3 or more ACKs for any packets transmitted after the
lost packet, irrespective of the specific TCP-v pipes they are bound to. This enables
pTCP to “fast reassign” lost packets to another pipe, much before individual TCP-v
pipes detect those losses. Therefore, when the fair share of each TCP-v pipe is low,
even if individual TCP-v pipes might experience timeouts due to insufficient data
to trigger fast retransmit, pTCP will not suffer.

– Redundant Striping: Another design element in pTCP to avoid head-of-line block-
ing is the redundant striping. We refer to the process of binding the same applica-

tion data to more than one virtual segment as redundant striping. In [11], a TCP-v
pipe that cuts down its congestion window to one (after a timeout) will be assigned
data that can be bound to another TCP-v pipe. In this way, the concerned TCP-v
can keep probing for the state of the path it traverses, without stalling the progress
of the whole pTCP connection (since it is possible that the path suffering a time-
out is currently experiencing a blackout). However, for achieving WSD, we use
a different redundant striping strategy. Not that there is no need to redundantly
stripe the first segment of the recently-stalled pipe, since all segments experience
the same dropping probability irrespective of which pipe they belong to. Instead,
pTCP redundantly stripes any segment that is retransmitted due to the fast retrans-
mit mechanism. This is because, in TCP, the loss of a retransmitted segment will
cause a timeout. By redundantly striping the retransmitted segment, pTCP ensures
no head-of-line blocking will occur even the concerned pipe might eventually ex-
perience a timeout. Although redundant striping might appear to be an overhead,
the overhead is small when compared to the benefits such striping brings to the
aggregate connection in terms of preventing a stall.

– Simplified Connection Setup: When used on multi-homed mobile hosts with het-
erogeneous network interfaces, the peers of a pTCP connection need to exchange
the number of interfaces to use and the corresponding IP addresses during connec-
tion establishment. As shown in [11], it takes at least two round-trip times to fully
establish all TCP-v pipes (the first round-trip time is needed to convey the IP ad-
dresses used by subsequent TCP-v pipes). However, for the target environment, all
TCP-v pipes of a pTCP connection terminate at the same pair of IP addresses, and
hence only a field in the packet header that carries the desired weight (hence the
number of TCP-v pipes to open) is needed. The connection setup time thus is the
same as a normal TCP connection. Note that in [11] a new IP layer socket hashing
function is necessary to map incoming segments with different IP addresses to the
same pTCP socket. Such hashing function is not required for achieving WSD.

4.2 Protocol

Fig. 4 provides an architectural overview of the pTCP protocol. pTCP acts as the cen-
tral engine that interacts with the application and IP. When used with a weight of w,
pTCP spawns w TCP-v pipes. TCP-v is a slightly modified version of TCP that inter-
acts with pTCP using the 7 interface functions shown in Fig. 4. The open() and close()
calls are same as the default TCP ones to enter or exit its state machine [20]. The es-
tablished() and closed() interfaces are used by TCP-v to inform pTCP when its state
machine reaches the ESTABLISHED and CLOSED state respectively. The receive() call is
used by pTCP to deliver virtual segments to TCP-v, and the send() call is used by TCP-
v to send virtual segments to pTCP which will then bind the segments to real data for
transmission. Finally, the resume() call is used by pTCP to throttle the amount of data
each TCP-v can send.

pTCP controls and maintains the send and receive data buffers for the whole con-
nection. Application data writes are served by pTCP, and the data is copied onto the
send buffer. A list of active TCP-v pipes (that have space in the congestion window
to transmit) called active pipes is maintained by pTCP. A TCP-v pipe is placed in

���������

	
���
������ �
�	

������� � ��� �!� "$#

%&�

')(*
)+-,��*. '�/�

�/�0 1��2. 3 /545
26�,��*. '2/�
26

	
2��
73
�

/�
)+�6

8 9;:;<= 8?> @ 9

A�@CB)A2DE8 9;B�F> A2DHGJI2@&A;I2@

/�
2+56K����� �
�	

�3 	 0 �*1�.�	
2�L
��2��� �
2		
�/*��M�

��3 +�6�3 +5N2/

�3 	 0 �*1�.O/�
�+�6P�2��� �
2	

�P�Q�R���
���P�Q�

SLT!U V W!X
YLV YLX�Z

Fig. 4. pTCP Architecture

active pipes initially when it returns with the established() function call. Upon the
availability of data that needs to be transmitted, pTCP sends a resume() command to
the active TCP-v pipes, and remove the corresponding pipes from active pipes. A
TCP-v pipe that receives the command builds a regular TCP header based on its state
variables (e.g. sequence number) and gives the segment (sans the data) to pTCP through
the send() interface. pTCP binds an unbound data segment in the send buffer to the
“virtual” segment TCP-v has built, maintains the binding in the data structure called
bindings, appends its own header and sends it to the IP layer. A TCP-v pipe continues
to issue send() calls until there is no more space left in its congestion window, or pTCP
responds back with a FREEZE value (note that the TCP-v needs to perform a few rollback
operations to account for the unsuccessful transmission). When pTCP receives a send()
call, but has no unbound data left for transmission, it returns a FREEZE value to freeze
the corresponding TCP-v, and then adds the corresponding pipe to active pipes.

When pTCP receives an ACK, it strips the pTCP header, and hands over the packet to
the appropriate TCP-v pipe (through the receive() interface). The TCP-v pipe processes
the ACK in the regular fashion, and updates its state variables including the virtual send
buffer. The virtual buffer can be thought of as a list of segments that have only appro-
priate header information. The virtual send and receive buffers are required to ensure
regular TCP semantics for congestion control and connection management within each
TCP-v pipe. When pTCP receives an incoming data segment, it strips both the pTCP
header and the data, enqueues the data in the recv buffer, and provides the appropri-
ate TCP-v with only the skeleton segment that does not contain any data. TCP-v treats
the segment as a regular segment, which is then queued in the virtual receive buffer.

5 Performance Evaluation

In this section, we compare the performance of pTCP against that of weighted AIMD
and application striping using both simulation and testbed results.

5.1 Single Link Configuration

We first evaluate the performance of pTCP using the network topology and scenario de-
scribed in Section 3 that we used for evaluating WAIMD and application striping. We
observe in Fig. 2(a) that pTCP scales considerably better than WAIMD and application
striping with increasing w, and follows the ideal curve closely even when w scales to
100. While it is clear that WAIMD suffers from its single-state design, pTCP outper-
forms application striping due to its design elements to prevent head-of-line blocking
explained in Section 4.1.

Considering the scalability of pTCP in terms of buffer requirement and bandwidth
fair share (i.e. congestion window size), we find in Fig. 3(a) and Fig. 3(b) that pTCP
also achieves much better performance than WAIMD and application striping. Note that
in Fig. 3(a), the bandwidth-delay product is around 24KB, and hence the ideal (mini-
mum) buffer requirement is 48KB [22]. The reason for the marginal decrease of pTCP
in the achieved weight can be explained by the coupling of the individual TCP-v pipes.
Although pTCP attempts to mask such coupling to the maximum extent possible, it
may still fail in some cases given a tight buffer allocation. However, even when the
buffer allocation is significantly reduced, pTCP’s performance reduces more gracefully
than the other two schemes as shown in Fig. 3(a). Similarly, in Fig. 3(b) we observe
that the performance of pTCP does not degrade until the link bandwidth is reduced to
4Mbps at which point the average congestion window size is approximately 8, while
both WAIMD and application striping exhibit performance degradation from their al-
ready lower performance, at a much earlier point. When the bandwidth is eventually
reduced to 3Mbps (the average congestion window size is around 6), individual unit
TCP flows become prone to frequent timeouts [21]. However, the performance of the
aggregate pTCP connection does not degrade by much even under such circumstances
because of its restriping and redundant striping strategy.

5.2 Multiple Link Configuration

In this section, we extend the simulation scenario to a more sophisticated network topol-
ogy with multiple backbone routers as shown in Fig. 5. The multi-link topology consists
of 5 backbone routers and 28 access nodes (access nodes for flows f 10 to f 13 are not
shown for clarity). Flows f 0 to f 9 are “long” flows with round-trip time of 240ms,
while flows f 10 to f 13 are “short” flows with round-trip time of 90ms and are used as
background traffic. As shown in Fig. 5 we also introduce 60 on-off UDP traffic (c0 to
c59) in both directions to emulate the flash crowds in the Internet. Each UDP traffic is
generated using the Pareto distribution, where the mean burst time is set to 1s, the mean
idle time is set to 2s, the data rate during the burst time is set to 200Kbps, and the shape
parameter is set to 1.5. Finally, we introduce another UDP traffic using CBR source on

��� ��� ��� ��� ��	
���
������
�������

����� ����� ����� �����

��

�"!

!

$��
��%�$�

������

$��
����$�

%�����

$��
������
�������

%��
������
�������

%��
��%�$�
�������

�&��'(�*)

+ ����' +�,)

+ ��' +)

Fig. 5. Network Topology (Multiple Links)

the bottleneck link (from R1 to R2) to explicitly control bandwidth fluctuations expe-
rienced by TCP flows along the bottleneck link. The data rate of the background UDP
traffic varies from 500Kbps to 3.5Mbps and fluctuates in a 1-second interval throughout
the duration of the simulation (600 seconds).

0

20

40

60

80

100

10 20 30 40 50 60 70 80 90 100

A
ch

ie
ve

d
W

ei
gh

t

Desired Weight

9 TCP Flows + 1 Weighted Flow

Ideal
pTCP
Application Striping
Weighted AIMD

(a) Throughput

0

0.02

0.04

0.06

0.08

0.1

0 2 4 6 8 10 12 14 16 18 20

R
el

at
iv

e
S

T
D

 (
S

T
D

/M
ea

n)

Desired Weight

10 Weighted Flows

pTCP
Application Striping
Weighted AIMD

(b) Fairness

Fig. 6. Performance of pTCP using Multiple Link Topology

In Fig. 6(a) we show the throughput ratio between the weighted flow (f 0) and the
average of the other 9 unit flows (f 1 to f 9)–recall that the weighted rate differentiation
is with respect to flows along the same path. It is clear that pTCP achieves a much higher
scalability than WAIMD and application striping as in the single bottleneck topology,
despite the sophisticated traffic distribution and bandwidth fluctuations. In Fig. 6(b), we
increase the number of weighted flows to 10 (f 0 to f 9), and vary the weight of individ-
ual flows from 1 to 20 (all weighted flows have the same weight) to study the fairness
property of the 3 schemes. We obtain the throughputs of individual flows, and use the
relative standard deviation as a metric to measure the “unfairness” experienced by all
flows. As Fig. 6(b) shows, WAIMD has the highest variance for large weights due to
frequent timeout occurrences. While application striping achieves similar performance
to pTCP when the weight is small, its performance degrades significantly with larger
weights. This again is attributed to the head-of-line blocking at the receiver (note that
the per-socket buffer requirement in application striping increases with weight).

5.3 Testbed Results

��������	�
��
���

� �	����

� � ��� ���

� �����

� �� � �� ��

� � � � � � �

 ! ! �		�" �� � �

� � � � � � �

 ! ! �		�" �� � �

� � � � � � �

�

� � � � � � �

�

$ ��% � �	

� & � �	

$ ��% � �	

� & � �	

Fig. 7. Testbed Topology

We now present evaluation results for a prototype implementation of pTCP tested
over a real-life campus network. We use the campus network shown in Fig. 7 as the
testbed. In order to avoid sub-millisecond round-trip times, the client and the server
communicate through a campus-wide wireless LAN. The server is a DELL Optiplex
GX110 desktop with a Pentium III 733Mhz CPU and 256MB RAM, and the client is
an IBM Thinkpad T-20 laptop with a Pentium III 700Mhz CPU and 128MB RAM.
Both the client and the server are equipped with the Orinoco IEEE 802.11b network
card operating at a data rate of 2Mbps, and run the RedHat 7.3 Linux operating sys-
tem. The round-trip time between the client and the server is approximately 15ms. The
background traffic in the network is not under our control.

We build pTCP upon a user-level implementation of TCP,3 and follow closely the
design and architecture presented in Section 4. The socket interface exported by pTCP
resembles that of TCP, except that it allows the specification of the desired weight w.
A simple client-server file transfer application is implemented, and the client and the
server use pTCP to communicate. We also use a modified version of the file transfer
application that explicitly opens w TCP sockets of unit weight and performs striping
over the w sockets. We use this to evaluate the performance of application striping, and
compare its performance against that of pTCP. We start two FTP applications between
the server and the client: one with unit TCP flow and one with weighted flow using
either pTCP or application striping.

In Fig. 8(a), we present the ratio of the throughput enjoyed by the weighted flow
to the throughput enjoyed by the default TCP flow, for different values of w. We show
both the results for pTCP and application striping. The ideal curve is also shown for
comparison. It can be observed that pTCP scales significantly better than application
striping for all weights, except for w = 15, where the ratio observed is 14:1. The rea-
son for the deviation from the ideal behavior is due to the implementation of pTCP at
the user-level. The maximum throughput of a user-level process is limited by the CPU
scheduling policy in the kernel. Since the server serves the two flows using two indepen-
dent user-level processes, each process obtains approximately equal share of the CPU
cycles. While this does not serve as a limitation for smaller weights, for the weight of
15, the CPU cycles become a bottleneck resulting in the marginally lower performance.
We note that such an overhead will not exist in a true kernel implementation.

On the other hand, we observe that the application striping results in Fig. 8(a) are
significantly worse than the ideal performance. Upon close inspection, it is determined

3 We thank Jia-Ru “Jeffrey” Li for sharing his user-level implementation code of TCP with us.

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

A
ch

ie
ve

d
W

ei
gh

t

Desired Weight

1 TCP Flow + 1 Weighted Flow

Ideal
pTCP
Application Striping

(a) Scalability with weight

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120

S
eq

ue
nc

e
N

um
be

r
(x

10
6)

Time (sec)

Sequence Number Progression (Weight=3)

pTCP

Application Striping

Ideal

(b) Sequence number progression

Fig. 8. Testbed Results

that severe head-of-line blocking is consistently observed due to both wireless chan-
nel losses and congestion losses, resulting in the individual flows stalling repeatedly.
Fig. 8(b) substantiates this observation where the sequence number plot of application
striping exhibits multiple timeouts, and has a much smaller slope than that of the ideal
curve. Note that pTCP, although tested in the same wireless environment, does not ex-
hibit performance degradation owing to the design elements described in Section 4.1.

6 Discussion

6.1 Scalability Limit

As we have shown in Section 5, pTCP exhibits a much higher scalability than weighted
AIMD and application striping. An application that requires weighted rate differentia-
tion of w can simply open a pTCP socket with w TCP-v pipes and enjoys the desired
service (subject to the policing mechanism of the service model). An interesting ques-
tion that arises is: what is the upper bound on the maximum weight that pTCP can
support for weighted rate differentiation?

The answer is determined by the network storage defined as the sum of the queue
length of the bottleneck router and the bandwidth-delay product of the end-to-end path.
Since a weighted pTCP flow with weight w essentially consists of w TCP mini-flows,
the maximum weight that pTCP can support is in fact limited by the maximum num-
ber of TCP connections the network can support. It is shown in [21] that since TCP’s
fast retransmit mechanism cannot recover from a packet loss without a timeout if its
window size is less than 4 packets, on average TCP must have a minimum send rate
of 6 packets per round-trip time. The network hence needs to store roughly 6 packets
per active connection, which places an upper limit on the number of connections that
can share the bottleneck link. If the number of connections increases beyond this limit,
timeouts become the norm and TCP will experience a high degree of delay variation and
unfairness. Although pTCP is designed to function even when some of the component
mini-flows experience timeouts (pTCP will not stall as long as one of the mini-flow is
not stalled), nonetheless it is undesirable to use pTCP in such a scenario.

200

400

600

800

1000

1200

100 200 300 400 500 600 700 800 900 1000

T
hr

ou
gh

pu
t (

kb
ps

)

Number of TCBs

10 Weighted Flows

Ideal

(a) Throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

100 200 300 400 500 600 700 800 900 1000

R
el

at
iv

e
S

T
D

 (
S

T
D

/M
ea

n)

Number of TCBs

10 Weighted Flows

(b) Fairness

Fig. 9. Setting Weight Beyond the Network Limit

To illustrate the phenomenon when the network is operated beyond its limit, we use
the same network topology as shown in Fig. 1. We introduce 10 pTCP flows with the
same weight to study their throughput performance when the total number of TCBs
open is greater than the network limit. For the network considered, the bandwidth-
delay product is 300 packets and the router’s buffer size is 320 packets, so the network
can store at most 620 packets at any instant. If we roughly apply the “6 packets per
connection” rule, then the maximum number of TCBs the network can support is around
100. When the number of TCBs used is beyond this limit, Fig. 9(a) shows the average
throughput enjoyed by each flow and Fig. 9(b) shows the throughput unfairness among
them. We observe that the average throughput degrades and the unfairness increases
due to the frequent timeout occurrences. In fact, when the number of connections is
greater than network storage (in terms of packets), each connection on average cannot
send more than 1 packet per round-trip time, which inevitably will induce timeouts.

A first look into the limitation of maximum weight might indicate that pTCP’s de-
sign of maintaining one TCB per unit weight causes the problem, since a pTCP flow
with weight w needs at least 6w packets of storage in the network. However, we contend
that for any TCP-based protocol, the maximum weight achievable will indeed be a func-
tion of the network storage. Recall that a flow with weight w should achieve throughput
w times the throughput of a flow with unit weight. Since TCP has a minimum send
rate of 6 packets per round-trip time, the flow with weight w needs to send at the rate
of at least 6w packets per round-trip time to achieve the desired service differentiation.
Hence, as long as the unit flows are TCP-based, the maximum achievable weight for a
single flow (or alternately, the maximum of the sum of the weights of contending flows)
will be bounded by η

6 , where η is the amount of network storage available.

Note that the design of pTCP by itself does not preclude the use of any other conges-
tion control mechanism that is different from that of TCP. Conceivably, if a congestion
control mechanism does not require transmission of at least one packet every round-trip
time, the limitation imposed by the network storage on the maximum weight achievable
can be eliminated. Such a scalable congestion control scheme can be used in tandem
with pTCP through the well-defined interface described in Section 4.2.

6.2 Host Overhead

pTCP, similar to application striping, maintains one TCB per unit weight. This will
incur a large overhead in terms of the kernel memory spent at the sender when the
weight for a connection is large. However, in pTCP, since the TCP-v pipes merely act on
virtual buffers, and act merely as congestion window estimators, the overheads incurred
are much lower than in application striping. Moreover, the TCB sharing [23] technique
can be used between different TCP-v pipes to further reduce the overheads such as RTT
estimation. Another promising approach to reduce the overhead incurred by pTCP is to
leverage the scalability of WAIMD for small weights by using a combination of pTCP
and WAIMD, where each TCP-v pipe uses WAIMD with a small weight (instead of
using the default TCP congestion control with unit weight). Hence, the number of TCP-
v pipes used in pTCP to achieve weight w can be reduced to at least w

2 (since WAIMD
will scale to a weight of 2 easily under all conditions), thus reducing the overheads
and complexity in pTCP. Mixing different congestion control schemes within pTCP is
possible due to its design of decoupled functionality.

7 Future Work and Conclusions

While we present pTCP as a solution to achieve weighted service differentiation, the
pTCP design can have a wider range of applications. Some examples are: (i) Each
TCP-v flow can traverse a different path, and hence the performance of pTCP will not
be limited to a single bottleneck path. (ii) For an environment where the network can
provide absolute QoS assurances, achieving bandwidth aggregation of QoS guarantee
service and best-effort service is a non-trivial problem [24]. pTCP can address such a
problem by dedicating one TCP-v for the guaranteed service, and one TCP-v for the
best-effort service, and effectively providing the application with the desired service.

In this paper, we use a transport layer protocol called pTCP to achieve weighted
rate differentiation. A pTCP flow of weight w consists of w TCP-v mini-flows that
collectively achieve throughput w times the throughput of a TCP flow. pTCP achieves
more effective service differentiation and incurs less host overhead than an approach
using multiple sockets. On the other hand, pTCP avoids the pitfalls of the approach
that changes the AIMD congestion control of TCP to resemble aggregate TCP flows,
i.e. propensity to timeouts and poor scalability. We present evaluation results showing
that pTCP is able to achieve end-to-end weighted service differentiation with better
scalability and fairness than those presented in related work.

References

1. Dovrolis, C., Ramanathan, P.: A case for relative differentiated services and the proportional
differentiation model. IEEE Network 13 (1999) 26–34

2. Banchs, A., Denda, R.: A scalable share differentiation architecture for elastic and real-time
traffic. In: Proceedings of IWQoS, Pittsburgh, PA, USA (2000)

3. Crowcroft, J., Oechslin, P.: Differentiated end-to-end internet services using a weighted
proportional fair sharing TCP. ACM Computer Communication Review 28 (1998) 53–69

4. Gevros, P., Risso, F., Kirstein, P.: Analysis of a method for differential TCP service. In:
Proceedings of IEEE Globecom, Rio de Janeiro, Brazil (1999)

5. Nandagopal, T., Lee, K.W., Li, J.R., Bharghavan, V.: Scalable service differentiation us-
ing purely end-to-end mechanisms: Features and limitations. In: Proceedings of IWQoS,
Pittsburgh, PA, USA (2000)

6. Postel, J.: Transmission control protocol. IETF RFC 793 (1981)
7. Allman, M., Kruse, H., Ostermann, S.: An application-level solution to TCP’s satellite ineffi-

ciencies. In: Proceedings of Workshop on Satellite-Based Information Services (WOSBIS),
Rye, NY, USA (1996)

8. Sivakumar, H., Bailey, S., Grossman, R.: PSockets: The case for application-level network
striping for data intensive applications using high speed wide area networks. In: Proceedings
of IEEE Supercomputing (SC), Dallas, TX, USA (2000)

9. Lee, J., Gunter, D., Tierney, B., Allcock, B., Bester, J., Bresnahan, J., Tuecke, S.: Applied
techniques for high bandwidth data transfers across wide area networks. In: Proceedings of
Computers in High Energy Physics (CHEP), Beijing, China (2001)

10. Hacker, T., Athey, B., Noble, B.: The end-to-end performance effects of parallel TCP sockets
on a lossy wide-area network. In: Proceedings of IPDPS, Fort Lauderdale, FL, USA (2002)

11. Hsieh, H.Y., Sivakumar, R.: A transport layer approach for achieving aggregate bandwidths
on multi-homed mobile hosts. In: Proceedings of ACM MobiCom, Atlanta, GA, USA (2002)

12. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An architecture for
differentiated services. IETF RFC 2475 (1998)

13. Dovrolis, C., Stiliadis, D., Ramanathan, P.: Proportional differentiated services: Delay dif-
ferentiation and packet scheduling. In: Proceedings of ACM SIGCOMM, Cambridge, MA,
USA (1999)

14. Nandagopal, T., Venkitaraman, N., Sivakumar, R., Bharghavan, V.: Delay differentiation and
adaptation in core stateless networks. In: Proceedings of IEEE INFOCOM, Tel-Aviv, Israel
(2000)

15. Shin, J., Kim, J.G., Kim, J.W., Kuo, C.C.: Dynamic QoS mapping framework for relative ser-
vice differentiation-aware video streaming. European Transactions on Telecommunications
12 (2001) 217–230

16. Kelly, F., Maulloo, A., Tan, D.: Rate control for communication networks: Shadow prices,
proportional fairness and stability. Journal of the Operational Research Society 49 (1998)
237–252

17. Massoulie, L., Roberts, J.: Bandwidth sharing: Objectives and algorithms. In: Proceedings
of IEEE INFOCOM, New York, NY, USA (1999)

18. Kunniyur, S., Srikant, R.: End-to-end congestion control schemes: Utility functions, random
losses and ECN marks. In: Proceedings of IEEE INFOCOM, Tel-Aviv, Israel (2000)

19. The Network Simulator: ns-2. http://www.isi.edu/nsnam/ns (2000)
20. Wright, G.R., Stevens, W.R.: TCP/IP Illustrated, Volume 2. Addison-Wesley Publishing

Company, Reading, MA, USA (1997)
21. Morris, R.: Scalable TCP congestion control. In: Proceedings of IEEE INFOCOM, Tel-Aviv,

Israel (2000)
22. Semke, J., Mahdavi, J., Mathis, M.: Automatic TCP buffer tuning. In: Proceedings of ACM

SIGCOMM, Vancouver, Canada (1998)
23. Touch, J.: TCP control block interdependence. IETF RFC 2140 (1997)
24. Feng, W., Kandlur, D., Saha, D., Shin, K.: Understanding and improving TCP performance

over networks with minimum rate guarantees. IEEE/ACM Transactions on Networking 7
(1999) 173–187

