

Enhancing TCP for Networks with Guaranteed Bandwidth Services

Yujie Zhu, Oyebamiji Oladeji, Kyu-han Kim and Raghupathy Sivakumar GNAN Research Group, Georgia Tech http://www.ece.gatech.edu/research/GNAN/

Introduction

- The Internet is envisioned to be able to provide QoS services in the near future (*diffserv, intserv*)
- Consider applications that can enjoy bandwidth provided by both the *intserv guaranteed service* and the *intserv best effort service*
- Problem Statement: How can a transport layer protocol deliver to such applications the ideal aggregate (reserved + best-effort) bandwidth, while providing TCP's end-to-end semantics?
- We propose GTCP, an enhanced version of TCP tailored for bandwidth guaranteed environments

TCP over Bandwidth Guaranteed Networks

TCP Congestion Window Adaptation

- Slow start: cwnd = 1; cwnd++ for every ACK; exit slow start when cwnd > ssthresh
- Loss indicated by 3 DUPACKs: cwnd = cwnd/2
- Retransmission Timeout: cwnd = 1, re-enter slow-start
- Illustration: reserved bandwidth = 50, cwnd = 80

TCP Self Clocking

- The receipt of an ACK for a packet triggers expansion of congestion window and transmission of a new packet
- However, when there are packet losses, self-clocking is stalled
- Problems exist even when TCP-NewReno is used, as long as the number of packet losses exceed a threshold

 $k > cwnd_{BF}/2$

original cwnd size

n

Georgialnstitute

outstanding packets after k losses

best effort part of cwnd after cut down

 $\begin{array}{c} \mathsf{cwnd}_{\mathsf{G}} & \mathsf{cwnd}_{\mathsf{BE}} \\ \hline \mathsf{cwnd}_{\mathsf{G}} & \begin{array}{c} \mathsf{cwnd}_{\mathsf{BE}} & \mathsf{k} \\ -\mathsf{k} & & \\ \hline \mathsf{cwnd}_{\mathsf{BE}}/2 \end{array}$

TCP's *self-clocking* is unaware of the reserved bandwidth!

Ideal Transport Protocol Design Goals

Reserved Bandwidth Awareness

Recognize and reliably deliver guaranteed network bandwidth to applications

Service Aggregation

Achieve aggregation of the best effort and reserved bandwidth available in the network

➤ TCP - friendliness

Georgia msi

Best effort part of the throughput should conform to fairness criteria

No Additional Implementation Overhead

GTCP is a TCP-friendly transport layer protocol that is reserved bandwidth aware, and delivers to applications the effective aggregate of the reserved and best effort bandwidths

- GTCP uses enhanced congestion window adaptation and selfclocking achieved through tailored mechanisms for *RTT estimation*, *cwnd calculation, start-up behavior, and congestion control*
- GTCP re-uses TCP's mechanisms for *flow-control, reliability, sequencing, and connection management*

GTCP Window Adaptation

\succ cwnd_G estimation

- \blacktriangleright cwnd_G = rate_G * rtt_{base}
- \succ *rtt_{base}*: min round trip time recorded in incoming packets
- \blacktriangleright cwnd = cwnd_G + cwnd_{BF}
- Start-up behavior
 - Initial *cwnd* = 2
 - \blacktriangleright cwnd > ssthresh + cwnd_G exit slow start

cwnd_{BE}

cwnd

TCP slow

GTCP slow

start

GTCP Self Clocking

- Transient Congestion
 - ➢ Receive 3 DUPACKs:
 - \succ cwnd_{update} = cwnd_G + cwnd_{BE}/2
 - *cwnd* not reduced immediately
 - ► For the first *cwnd*_G DUPACKs
 - Forced data transmission
 - \succ cwnd = cwnd + 1
 - ► Ignore later $cwnd_{BE}/2$ (or $cnwd_{BE}/2 k$ when $k > cwnd_{BE}/2$) DUPACKs
 - > Transmit new packets for further DUPACKs, if any
 - ► Full ACK arrival: *cwnd* = *cwnd*_{update}
- Severe congestion

Georgialnstitute

Timeout recovery has similar design: at least cwnd_G packets are transmitted per RTT during timeout

GTCP Self Clocking Illustration

 $k > cwnd_{RF}/2$

(2) outstanding packets after k losses

(3) cwnd after the first cwndG DUPACKS

(4) cwnd after the later $cwnd_{BE}$ - k DUPACKS

(5) new packets sent during fast recovery

Georgialnstitute

cwnd_{BE}

cwnd _G cwnd _{BE}	cwnd _G
--------------------------------------	-------------------

cwnd_G

cwnd_c

Simulation Results

- Same topology
- ≻ 6 flows (f0 f5)
- f0 f2: 4Mbps, 2Mbps and 1Mbps reservation

f1: 2M

f4

f3

f5

n2

n3

n4

n5

n6

n7

n8

f3 – f5: best effort

f0: 4M

f2: 1M

n1

Georgialnstitute

GTCP Throughput

Simulation Results (Contd.)

gtep non-compliant throughput plot

Other Simulation Results

- Scalability with Link Capacity
- Scalability with Number of Total Flows
- Scalability with Number Flows with reservations
- Scalability with Reserved Bandwidth
- Impact of RTT

GTCP is able to achieve close to ideal throughput in all the above scenarios while maintain TCPfriendliness

Saha D. Shin et. al. [Transnet'99]:

- Improve TCP performance with delayed and timed transmission
- Timer overhead (at granularity of 20ms)
- ≻ Lars Wolf et. al.[KiVS′01]:
 - Remove slow start, scale up TCP's flow control window, rate based transmission
 - No performance comparison with TCP
- > Ikjun Yeom et. al.[ICMCS'99]:
 - Inverse rate drop mechanism
 - Require network support

GeorgiaInstitute

Conclusions & Future work

- Default TCP does not perform well in a bandwidth guaranteed environment
- Reasons for TCP's non-ideal performance
- GTCP, an transport protocol for achieving ideal throughput in the target environment
- GTCP's performance verified throug simulations
- GTCP implemented in Linux Kernel
- > Future work:

Non guaranteed QoS: controlled load, diffserv

Questions & Comments ?

For more information: http://www.ece.gatech.edu/research/GNAN/

