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Abstract— In this paper we consider TCP based applications
that use bandwidth guarantees, but can also benefit from any
additional best-effort service offered by the network. We show
that default TCP cannot offer such applications the aggregate
throughput offered by the two services. We propose an adaptation
of TCP called GTCP that uses changes to TCP’s congestion
control mechanisms to provide the optimal aggregate throughput.
GTCP does not require any additional implementation overheads,
and does not change the TCP receiver. Through simulations we
show that GTCP achieves significantly better performance than
default TCP in the target environment.

I. INTRODUCTION

The Internet is increasingly being seen as an infrastructure
that will lead to digital convergence, supporting a diverse set
of applications including streaming media, video conferencing,
digital telephony, and plain data transfer. This has in turn
resulted in the focus on providing applications with quality
of service (QoS) assurances that cannot be provided in the
current best-effort service model of the Internet. The inte-
grated services (intserv) and differentiated services (diffserv)
architectures are examples of approaches that can provide QoS
assurances to applications.

In this paper, we consider applications that subscribe to
bandwidth reservations in networks that are QoS enabled
through either of the above-mentioned architectures and still
require the reliable sequenced delivery services of the ubiq-
uitous TCP transport protocol. We contend that such appli-
cations, while utilizing their reserved bandwidths, can further
benefit from any best-effort bandwidth provided by the net-
work1. In this context, we consider the following question:
How can the aggregate of the reserved and best effort band-
widths be delivered to the application effectively?

To address this question, we profile the performance of
the default TCP protocol over networks that provide both
guaranteed and best-effort bandwidth services, and identify
the key reasons for its non-optimal performance. Based on
the analysis, we propose an enhanced version of the TCP2

transport layer protocol called GTCP. GTCP successfully

∗This work was supported in part by funds from the National Science
Foundation(awards ANI-0117840, ECS 0225497, and CCR0313005), ya-
macraw(http://www.yamacraw.org), and the Georgia Tech Broadband Institute

1Note that providing such applications with their best-effort share of
bandwidth is also fair if we assume realistically that the basic best-effort
service level agreement with the network service provider exists.

2We assume TCP NewReno in this paper.

delivers to the application the aggregated data rates offered by
the guaranteed and best-effort services. It adapts the slow-start,
congestion avoidance, congestion control, and timeout reaction
mechanisms in TCP to achieve the improved performance.

Through a comprehensive set of simulations, we evaluate
the performance of GTCP and show that it achieves the desired
performance over a variety of scenarios, and scales well across
a variety of factors.

The rest of the paper is organized as follows: Section II
discusses related work, identifies the key drawbacks of TCP
and motivates the design of GTCP. Section III presents the
design of GTCP. Section IV evaluates the GTCP protocol
and Section V discusses some implementation issues and
concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Network and Service Model

The proposed protocol is relevant to any architecture that
supports bandwidth reservations. For the sake of clarity, we
assume the guaranteed service model supported by the intserv
architecture ([2]) in the rest of the paper. We make the fol-
lowing additional assumptions: (1) the marking of conforming
traffic is performed at the access router that the source is
attached to; (2) bandwidth reservations have been made out-
of-band through a reservation protocol such as RSVP [3]; and
(3) the specifications for the reserved bandwidth is conveyed
by the application to GTCP through a special socket option.

B. TCP over Networks with Guaranteed Bandwidth

In this section we identify the key elements in TCP’s con-
gestion control mechanisms that contribute to its non-optimal
performance when operating over networks with bandwidth
guarantees. We classify these elements under the following
two categories:

(1)Congestion Window: TCP uses a window based conges-
tion control algorithm, where the congestion window cwnd3

represents the instantaneous rate enjoyed by a connection
normalized to its round-trip time. In other words,

cwnd = rate ∗ rtt

where rate is the instantaneous available rate and rtt is the
round-trip time. In an ideal setting, for a connection with a

3Without loss of generality, we assume that cwnd is measured in packets,
rate is measured in packets/second, and rtt is measured in seconds.



reserved bandwidth of rateG and a best-effort rate of rateBE ,
TCP’s cwnd should converge to

cwnd = (rateG + rateBE) ∗ rtt

However, TCP is designed for an environment where all flows
are best-effort flows without bandwidth assurances.

Default TCP will adapt its congestion window unaware of
the available reserved bandwidth. For example, if the current
cwnd is 100, of which the reserved bandwidth component
is 50 and the best effort component if 50, and congestion
is detected through receipt of DUPACKS, TCP will reset
its congestion window to 50. However, an ideal congestion
window adaptation should not change the reserved bandwidth
component and should halve only the best-effort component,
resulting in a congestion window of 75. Similarly, upon the
expiry of the retransmission timer, instead of going down to
a congestion window size of 1, the ideal congestion window
adaptation should result in a window size of

cwnd = 1 + rateG ∗ rtt

Finally, TCP uses a constant slow-start threshold (ssthresh)
during its initial slow-start period, and uses half of its current
cwnd as the new ssthresh value upon loss detection. Ideally,
TCP’s ssthresh values should be set based on the reserved
bandwidth for the connection.

(2)Self Clocking: Self-clocking is a technique used by TCP
wherein the receipt of an ACK for a segment triggers the
transmission of a new segment, and appropriately expands the
congestion window. The use of such self-clocking reduces the
timer overheads incurred by TCP, and ensures that TCP’s rate
of transmitting segments is highly conservative (unlike say in a
rate based scheme). The ideal behavior for a connection with
bandwidth reservations should transmit at least rateG ∗ rtt
worth of segments every round-trip time. TCP’s default self-
clocking is automatically maintained even for a connection
with bandwidth guarantees as long as there are no losses.
However, when losses occur, the left edge of the TCP cwnd
cannot be shifted pending the arrival of the ACK for that first
unacknowledged sequence number4.

In section IV, we will substantiate the above discussions
by evaluating default TCP’s performance in an environment
where connections have reserved bandwidths.

We use the insights drawn in this section in the design of
GTCP that we present in Section III.

C. Related Work

Several related works have been proposed to improve
TCP’s performance in networks that provide bandwidth
guarantees.[1],[4]

In [1], one of the main changes proposed to improve TCP’s
performance in a guaranteed bandwidth environment is to use

4Note that even if a loss occurs somewhere in the middle of the congestion
window, the ACKs for the segments before the loss would have shifted the
left edge of the congestion window to the sequence number corresponding to
the segment that is lost.

delayed and timed transmissions. In delayed transmission, a
packet is held back for a random amount of time until there
are enough tokens to transmit it as a marked packet whereas
in timed transmission each flow with a reservation maintains
a periodic timer, transmitting a new packet at the expiration
of the timer. This poses a significant overhead given that the
granularity of the timers used is as low as 20ms. A key
goal of GTCP is to avoid any additional timer overheads,
and still achieve desired results. Furthermore, the approach
in [1] is based on TCP Reno while GTCP’s design is based
on NewReno.

[4] proposes several schemes including limiting the number
of out of profile packets transmitted, deploying an inverse-rate
drop mechanism (where the drop probability at the router is
inversely proportional to the reservation level of the flow),
and using three drop priorities. These mechanisms require
network support at the core as opposed to our approach which
is applicable to any end-system mechanisms.

D. Design goals

In order to improve TCP’s performance in networks with
bandwidth guarantees, we propose an enhanced version of
TCP called GTCP that address the previously mentioned
problems. The following are the key design goals of GTCP:
(a) Reserved bandwidth awareness: GTCP should recognize
bandwidth reservations made by connections, and reliably
deliver the reserved bandwidth to the application. (b) Ser-
vice aggregation: GTCP should be able to use any best-
effort bandwidth given by the underlying network, and deliver
the aggregate of the reserved and best effort throughput to
the application. (c) TCP-friendliness: The best effort service
enjoyed by a GTCP connection should always be exactly
the same as what a single TCP-flow without reservations
would obtain, independent of the reservations made for the
connection. (d) No additional overheads: GTCP should not
incur any additional overheads such as timers to attain desired
throughput.

III. THE GTCP DESIGN

In this section we describe the GTCP design. GTCP uses
the same mechanisms as TCP for flow control, sequencing,
reliability, and connection management (establishment and
tear-down). It differs from TCP only in its congestion control
mechanisms, and hence we elaborate only on these parts in
this section.

A. Round-trip Time Estimation and Congestion Window

Since TCP uses a window based congestion control scheme,
any bandwidth reservation done for a connection has to be
translated into an appropriate window size. A simple approach
to perform the translation is to set the reserved component of
the congestion window as follows:

cwndG = rateG ∗ rttbase

where rttbase is the round-trip time for the connection. rttbase

differs from the default round-trip time used by TCP in



that it approximates only the sum of the transmission and
propagation delays along the forward and reverse paths used
by the connection5. The rttbase is calculated just as in TCP-
Vegas [5] by keeping track of the minimum round-trip time
sample experienced by the packets in the connection:

rttbase = min(rttbase, rttsample)

Once the reserved bandwidth component of the congestion
window is computed as above, GTCP’s steady state congestion
window cwnd is maintained at:

cwnd = cwndG + cwndBE

where cwndBE is the best-effort component of the window.
Note that cwndBE for a GTCP connection will always remain
the same as the cwnd it would have had if it were a default
TCP connection without any reservations, thus ensuring the
TCP-friendly nature of GTCP. In the rest of the section we
elaborate on how the congestion window is updated, and how
the properties of GTCP are achieved.

B. Start-up Behavior

GTCP uses slow-start for both the reserved bandwidth and
the best-effort components. This is to ensure that large packet
bursts are not sent into the network causing buffer overflows.
The initial congestion window of the connection is set to two
(one for the best-effort component and one for the reserved
bandwidth component). For every ACK received during slow-
start, the cwnd is incremented. GTCP exits from slow-start
when cwnd is larger than the sum of the default ssthresh
and the ideal reserved bandwidth component of the congestion
window (rateG ∗ rttbase).

C. Congestion Avoidance

In steady state, TCP performs congestion avoidance by
increasing its congestion window by one every round-trip time.
GTCP uses the same congestion avoidance mechanism of TCP.
For every ACK received during congestion avoidance, cwnd
is incremented by 1

cwnd . Note that although GTCP does not
explicitly maintain the best-effort and reserved components of
the congestion window separately, cwnd will be the sum of
cwndG and cwndBE .

D. Congestion Control

In TCP, when a loss event is detected through the receipt of
three DUPACKs, the cwnd is halved. In GTCP, since only the
best-effort component of the cwnd is halved, and the window
update is performed as follows:

cwnd = cwndG +
cwndBE

2
This is similar to the approaches proposed in related work

[1]. However, GTCP differs from such approaches in its fast
recovery and timeout handling mechanisms.

(1)Fast Recovery: Fast recovery is critical to connections
with bandwidth reservations as otherwise no new data will be

5TCP’s default rtt estimate includes the queuing delay.
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Fig. 1. Default TCP Fast Recovery Behavior

sent during the loss recovery period. Ideally, if there are k
losses and the congestion window at that stage is cwnd, then
the ideal number of new segments that need to be sent every
round-trip time should be

FRideal = max(cwndG, cwnd − k − cwndBE

2
)

The default fast recovery mechanism coupled with the
window adaptation described earlier can sustain the desired
self-clocking for small number of losses. However, if the
number of losses k is larger than half of the best-effort
component of the congestion window ( cwndBE

2 ), TCP will not
send the desired amount of data, as illustrated in Figure1.

In order to solve this problem, GTCP uses a modified fast
recovery mechanism that is described below:

• When a loss event is detected, GTCP does not adjust the
congestion window immediately, but saves the updated
window size cwndG + cwndBE

2 as cwndupdate.
• GTCP performs forced data transmissions for the first

cwndG DUPACKs immediately following a loss detec-
tion, and expands cwnd for each transmission.

• After cwndG transmissions, GTCP ignores the later
cwndBE

2 (or cwndBE − k if k > cwndBE

2 ) number of
DUPACKs (no transmissions are triggered and cwnd
remains the same).

• GTCP transmits new data segments for further DU-
PACKS (if there are any)

• When an ACK (acknowledgment) arrives for the max-
imum sequence number at the time of loss detection
(termed a Full ACK), GTCP collapses its window to
cwndupdate.

The modified fast recovery algorithm is illustrated in Figure
2.

Because we assume that cwndG number of packets are
reliably transmitted by the network, it is guaranteed that there
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are enough DUPACKs coming back to trigger at least cwndG

more number of packet transmissions after loss indication.
Using this algorithm, when the number of losses k <

cwndBE

2 , GTCP’s behavior will be exactly the same as that
of TCP NewReno, but the sequence in which the window is
expanded, and cwndG worth of new data packets is trans-
mitted, is switched. However, when k > cwndBE

2 , at least
cwndG number of packets are sent out, satisfying the FRideal

identified earlier.
(2)Timeout Recovery: Timeouts can occur in default TCP

due to two reasons - (a) less than four packets in a conges-
tion window delivered successfully at the receiver and (b) a
retransmitted packet lost again. However, for connections with
bandwidth reservations, given our service model assumption
that marked packets will not be dropped in the network, only
the second reason can lead to a timeout as long as cwndG is
greater than four.

Hence, we change GTCP to successfully maintain its self-
clocking during the timeout recovery period such that at least
cwndG worth of packets are transmitted every round-trip time.
The design principle is similar to that of the modified fast
recovery algorithm.

• When timeout occurs, the congestion window cwnd is
collapsed to one (not cwndG + 1), representing the true
best-effort component of the congestion window, and the
maximum sequence number transmitted thus far is saved
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Fig. 3. Network Topology: Flows f0-f5 all originate from n1 and
terminate at nodes n6-n11 respectively.

as ssexitthresh.
• For each of the first cwndG number of DUPACKs, GTCP

transmits a new data segment. The latter DUPACKS
are not responded until the total number of incoming
DUPACKS exceed the number of outstanding packets
when timeout occurs. After that, a new data segment is
transmitted for every incoming DUPACK.

• When the incoming ACK is not a DUPACK, and hence
shifts the left edge of the cwnd and expands the cwnd,
GTCP retransmits all the data segments that lie within the
cwnd after the shifting and the expansion. This behavior
is exactly the same as that of default TCP during slow-
start.

• Finally, when the left edge of the cwnd is shifted beyond
ssexitthresh, GTCP exits slow-start and collapses its
window to cwndG + cwndBE , which is the size of the
cwnd when the last expansion occurs.

Note that for timeout recovery, GTCP performs a slow-start
only for the best-effort component of the congestion window
and the reserved bandwidth component is maintained at the
reservation level. Hence, GTCP’s start-up behavior is different
from that of its timeout recovery behavior.

In Section IV we evaluate GTCP’s performance and com-
pare it with that of default-TCP and the ideal expected
performance. In addition to the properties presented in this
section, we show through our performance evaluations that
GTCP scales well for a variety of factors.

IV. SIMULATIONS

In this section, we compare GTCP’s performance against
that of default TCP. We use the ns2 network simulator for our
simulations.

Bandwidth reservations are implemented in the ns2 simu-
lator to emulate the intserv guaranteed service model mech-
anism. Flows with reservations are identified by their source
and destination addresses. Node n2 serves as the edge router
where metering and packet marking is done.

We use throughput as the main performance metric in the
simulation, and differentiate between aggregate throughput,
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best effort throughput, and compliant throughput (correspond-
ing to reserved bandwidth) when necessary.

A. Basic Scenario

We present results for GTCP using the network topology
described in Figure 3. There are 6 flows, 3 of them (f0-f2)
have reservations of 4Mbps, 2Mbps and 1Mbps respectively,
and the remaining 3 are best effort flows. Hence we expect to
ideally achieve rates of 4.5Mbps, 2.5Mbps and 1.5Mbps for the
three reserved flows respectively. Figure 4 shows that GTCP is
able to achieve close to the expected throughput for the three
reserved flows. The addition of rateG worth of packets to the
congestion window at start-up allows the reserved flow to get
their reserved rate from the start of the connection. Also the
modification to TCP’s congestion control mechanism after a
loss occurs ensures that the flow can still enjoy its reserved rate
when a loss occurs. These two mechanisms allow the reserved
flows to achieve their compliant throughput, and enjoy a fair
share of the excess bandwidth.

Figures 5 and 6 show the compliant and non-compliant(best-
effort) components of the aggregate instantaneous throughput.
It is observed that GTCP is able to achieve the sum of the
reservation rate, and the fair share of the excess bandwidth as
desired.

B. Scalability

First we investigate whether GTCP’s performance scales
as link capacity increases, and reservation levels increase
proportionately. Figure 7 shows that as the link bandwidth
increases from 10Mbps to 30Mbps, and the reservation level
is increased by the same proportion, GTCP is still able to
achieve close to the expected throughput. This is expected
since the offset added to the congestion window is directly
proportional to the reserved bandwidth. The advertised receive
window size could potentially pose a bound on the sender’s
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transmission rate. However, TCP’s window scaling option is
used to overcome the problem.

In Figure 8, we present results to show that as the number
of flows increases (and the number of flows with reservations
is scaled up by the same proportion) GTCP still scales. In
this scenario, the link capacity is kept constant and half of it
reserved for the flows with bandwidth guarantees. Hence the
the per-flow target rate reduces as the number of flows with
reservations increases. However the realized rate still closely
tracks the target rate as shown in Figure 8. As expected, TCP’s
performance is better when the target rate is lower, but is
significantly worse when the target rates are higher.

Next we proceed to show that as the number of flows
with bandwidth reservations increase (assuming total number
of flows is held constant), GTCP scales. The number of
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flows, reserved bandwidth, the ideal throughput and achieved
throughput of each flow are demonstrated in Figure 9. As the
number of flows with reservations increases, the proportion of
reserved bandwidth when compared to the bottleneck capacity
increases. Figure 9 shows that even when we have 5 reserved
flows with a total reservation of 10Mbps, (same as link
bandwidth) and 1 best effort flow, GTCP still tracks the target
rate quite well for all the flows. However, as the number of
flows increases, default TCP is unable to achieve the target
rate.

V. CONCLUSIONS

In this paper, we address the problem of enhancing TCP’s
performance over networks with guaranteed bandwidth ser-
vices. We show that default TCP cannot achieve the desired ag-
gregate bandwidth which is the sum of the reserved and best-

Number of flows with reservation vs throughput

1

1.5

1

2
1.5

1

2.5

2
1.5

1

3

2.5

2
1.5

1

2.5

2.75

2.25

2.92

2.42

1.92

3

2.5

2

1.5

3

2.5

2

1.5

1

2

2.25

1.92

2.41

2.04

1.76

2.58

2.22

1.76

1.45

2.67

2.28

1.79

1.45

1.13

2.42

2.73

2.15

2.89

2.35

1.87

2.96

2.45

1.97

1.49

2.97

2.49

1.96

1.41

0.98

0

2

4

6

8

10

12

14

f0 f0 f1 f0 f1 f2 f0 f1 f2 f3 f0 f1 f2 f3 f4

Number of flows with reservation

T
h
ro
u
g
h
p
u
t 
(
M
b
p
s
)

GTCP

default TCP

IDEAL

RESERVATION

Fig. 9. GTCP Scalability with Number of Flows with Reservation:
Throughput

effort components. We propose a enhanced version of TCP
called GTCP, that achieves the optimal aggregate performance
without relying on additional overheads (when compared to
default TCP). GTCP involves changes only to the congestion
control mechanisms of TCP, and hence does not require any
changes to the TCP receiver. Through simulations we show
that GTCP achieves the desired performance in a variety of
network scenarios.
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