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Abstract - In this paper, we propose a deployable 
approach to improving QoS by using the familiar overlay 
architecture approach.  The goals of this work are to 1) 
create an overlay architecture which allows us to sample 
specific path quality metrics among different paths; and 2) 
utilize the proposed overlay architecture in order to 
implement our proposed QoS-based routing scheme, 
Application Layer Switching (ALSW).  We show that we 
are able to achieve better than best-effort QoS without 
modifying intermediate nodes (i.e., routers), thus 
encouraging immediate deployment.  Additionally, this 
research is performed on an actual wide area network 
testbed, comprised of universities across the nation.  Also, 
we assemble this architecture as a peer-to-peer 
framework, encouraging collaborating individuals with 
average workstations to improve the QoS of their traffic. 

I. INTRODUCTION 
 

The Internet has evolved to provide a multitude of 
services.  In order to accommodate desired real-time services, 
or to merely achieve better than best-effort service1, some 
level of Quality of Service (QoS) must be established. 
Several different techniques have been proposed to resolve 
this issue, all of which require a moderate to significant 
overhaul of the current Internet infrastructure.  We propose a 
deployable approach to improving QoS by using a generic, 
extendable, overlay architecture; the Generalized Application 
Layer Overlay (GALO) 

In this paper, we present findings from a multiple-week 
study of Internet traffic dynamics using link throughput as the 
primary metric. Many traces were conducted through a four 
node, mesh-connected, “real world” Internet testbed. We 
generate different types of traffic using a generic, 
multipurpose, sockets program.   Among other things, these 
findings show improper load balancing and link utilization 
across Internet paths.  We synthetically construct alternate 
paths showing that 50% of the nodes have a better path 
quality if alternate links are used, with an increase in 
throughput seen by a flow, ranging from 30% - 120%.   
 The aforementioned findings give initial motivation for 
the establishment of GALO.  GALO provides a mechanism to 
obtain the state of the monitored network via invasive or non-
invasive sampling/probing. The sampling/probing is 
performed by cooperating end nodes.  The GALO 
architecture is designed in a modular fashion and has three 
primary components: Distributed Client Engine (DCE), QoS 

                                                 
1 Better than best-effort QoS will not suffice for real-time, delay sensitive, traffic; but 
can be beneficial for non real-time traffic, e.g., mail transfers between mail servers, or 
FTP flows. 

Routing Engine (QRE), and the Forwarding Engine (FE).   
We extend GALO by introducing the Application Layer 

Switching module (ALSW).  Application Layer Switching is a 
concept introduced to provide a better than traditional, 
shortest path, best-effort, routing service to traffic flows.  
ALSW is considered a form of QoS-based routing that has 
the ability to utilize alternate paths to provide an overall 
better path quality.  It can make routing decisions based on 
more than one metric (i.e., shortest path, loss, delay, delay 
jitter, and throughput), as well as help to distribute the traffic 
load among multiple nodes and links in the Internet.  This is 
achieved by constructing non-shortest path routes by 
appending different link combinations with specific metrics 
from the source node to end node; using end nodes as 
switches.  We show empirically, that by simply re-routing 
traffic over underutilized links, we can, in a deployable 
fashion, immediately improve QoS.  The performance 
analysis of ALSW shows results that 70% of the rerouted 
flows experienced a 30%-120% increase in throughput over 
the average throughput of the default path.   

The rest of this paper is organized as follows:  Section II 
discusses traffic measurement, our experimental 
methodology, findings from the empirical traffic analysis 
conducted on our testbed, and the construction of synthetic 
alternate paths.  In Section III we discuss the motivation and 
description of the GALO architecture.  Section IV discusses 
an extension to GALO, the ALSW module.  Section V gives 
the performance analysis using ALSW, and Section VI 
concludes the paper.  

II. ALTERNATE PATH EVALUATION AND 
MOTIVATION 

A. Background 
 Normally, researchers perform empirical studies to 
understand precisely the behavior of the network of interest.  
These studies are generally helpful but are most accurate for 
the particular region of the Internet at the particular time of 
measurement.  Likewise, our study is most accurate for its 
focus region at the times of measurement.  From such 
focused study, we can only glean and infer principles and 
characteristics of general Internet traffic behavior.  
Additionally, empirical studies must be performed regularly 
due to the inability to predict future types of Internet traffic 
and their characteristics. 

In our experiment, we use a generic sockets program to 
empirically observe Internet traffic dynamics, using 
throughput as the primary metric in order to observe traffic 
load imbalance over our testbed. 

 



 
Fig. 1. QoS WAN testbed. 

B. Experimental Setup 
 We used four end nodes, mesh connected via the 
Internet, to conduct our experiments.  As such, each node 
takes a different route to every other node.  The experiments 
were bidirectional, so in total, twelve different “paths” were 
monitored.  The nodes were stationed at universities (US) on 
the east and west coast: Georgia Institute of Technology 
(GT), North Carolina A&T University (NCAT), University of 
California Los Angeles (UCLA), and University of California 
Riverside (UCR) (Fig. 1). 

We conducted our analysis using a modified version of 
the sock program [3].  TCP data transfers were generated.  
The transfer duration was varied by modifying the file size.  
Each node, at a specified time, assumed the role of client and 
server by executing several instances of sock.   The sock 
program was modified to collect desired information of a 
particular flow: IP addresses, port numbers, block size, and 
arrival time.  Once the scenario was completed, the data was 
copied to a central location for later analysis.    

 
 

               Table 1. Link descriptions.                                    
Link # Link Description 
Link 1 UCR->NCAT 
Link 2 GT->NCAT 
Link 3 UCLA->NCAT 
Link 4 UCR->GT 
Link 5 NCAT->GT 
Link 6 UCLA->GT 
Link 7 NCAT->UCR 
Link 8 GT->UCR 
Link 9 UCLA->UCR 
Link 10 UCR->UCLA 
Link 11 GT->UCLA 
Link 12 NCAT->UCLA 

 
       Fig. 2. Average throughput of each path. 

C. Results 
Fig. 2 gives the average throughput over the experiment 

duration seen by TCP flows over each path.  Link 9 appears 
to have the greatest average throughout, while Link 1 is 
plagued with the stigma of the slowest link.  This study 
reaffirms what many before it has concluded, the Internet 
suffers heavily from load imbalances and even link 
asymmetry along the same path.  This is a result of link 
capacity imbalance as well as variable demands placed on 
different links at various times.   

D. Alternate Paths 
 Until the work done in [1], most literature in the traffic 
measurement community stopped at that conclusion drawn 
above.  However, in [1], Savage et al. discussed how, if 
underutilized links were compounded to create alternate paths 
to a destination, a significant portion of the flows would have 
an alternate path with a higher capacity than the default path.  
 Building on the work done in [1], we perform a similar 
exercise with our testbed.  Based on the above results 
(average throughput of each link), using the existing testbed 
with four nodes and a total of twelve alternate paths, we 
synthetically construct alternate paths for each source node to 
each destination node (every node is a source and destination 
node).  Thus, we have a total of twelve paths (default and 
alternate paths) from each source to destination.  Fig. 3 shows 
a CDF of the throughput of the best alternate path minus the 
throughput of the default path, for each source to each 
destination.   We observe that 50% of the nodes had a better 
alternate path with a higher average throughput.  Also, Fig. 3 
shows the percentage increase ranges from approximately 
30% to 120%.  Though this synthetic construction of alternate 
paths was done offline, it shows first hand the extent of under 
utilized links (over time), and motivates the real-time use of 
ALSW. 

 
Fig. 3. Best alternate path - default path (%). 

III. Generalized Application-Layer Overlay 

A. Background 

 An overlay architecture is an architecture where the 
current infrastructure remains in place and a virtual 
infrastructure or network is run atop it.  Overlay networks are 
often the approach of choice, given that they can provide 
instant “results” and can span multiple autonomous systems 
without agreement or cooperation of the ISPs, thus avoiding 
their logistical conundrum.   
 Overlay architectures have been used in various 
instances; ranging from mobile networks [7, 8], virtual 
private networks [9], computer virus enabling, peer-to-peer 
file sharing networks [10], and probably the most popular, 
end system multicast [4, 5].    
  



B. GALO Logical Architecture 
 Thus far, we have given an overview of QoS and QoS-
based routing.  We have also presented an empirical study of 
Internet traffic dynamics.  The throughput measured in this 
empirical study of the WAN links is extracted and used as 
motivation for additional work.  We now propose an overlay 
architecture that will provide the backbone for an 
immediately deployable QoS-based routing scheme.  In 
accordance with past overlay approaches [4, 7, 8, 9, 10], this 
scheme requires no modification to intermediate nodes 
(routers and switches) and requires only a software upgrade 
to collaborating end nodes (workstations).  The software 
upgrade is minimal in that a user can install the program 
without root privileges or any kernel modifications.  The 
Generalized Application-Layer Overlay (GALO) architecture 
is designed in a modular fashion and has three primary 
components: Distributed Client Engine (DCE), QoS Routing 
Engine (QRE), and the Forwarding Engine (FE).  The FE is 
optional depending on the extension modules.  We plan to 
use the data gathered by GALO to perform Application Layer 
Switching which requires the FE functionality.   
•  DCE:  The DCE is a process that resides on each 
collaborating node.  The primary purpose of the DCE is to 
transmit path quality updates back to the QRE.  The DCE 
continuously calculates path quality depending on the 
specified metric.  In our case throughput is the only metric 
considered. Depending on the desired level of path quality 
accuracy, the DCE transmits control packets to the QRE.   
•  FE: The FE resides collocated with the DCE on each 
collaborating node.  The FE is invoked only at transit nodes.  
Its primary responsibility is to act as the switching engine for 
passing traffic.  Once the appropriate signaling2 is received 
from the QRE, the FE dynamically modifies its engine to 
allow incoming traffic to be received and switched along the 
outgoing path.  The FE’s strength lies in its modular design.  
The current specification requires that the actual switching 
take place at the application layer.  This approach has an 
obvious inefficiency in that the traffic must traverse the 
protocol stack to the application layer to be switched, and 
then traverse the stack again to continue to its destination.  As 
such, this approach initially appears inefficient.  Though the 
success of this technique is a factor of 1) hardware capacity; 
2) processing load of the machine; 3) number of hops for a 
rerouted flow; 4) as well as the inefficiencies of traversing the 
entire protocol stack twice; we show (in Section V) that this 
delay will be negligible and a significant amount of the 
rerouted flows benefit from this technique.  Also, this 
approach is desired because it is directly in line with our 
goals of no modification to the intermediate infrastructure 
and minimum modification to the end nodes.  Another 
possible approach is to use Source Routing between nodes.  
This would require that each collaborating node support 

                                                 
2 The Application Layer Communication Protocol (ALCP) is the corresponding 
signaling/communications protocol that was designed to support this architecture.  Due 
to space limitations, the description of the ALCP is not presented.  

Source Routing and would be more efficient, as the traffic 
would only have to go to the network layer for routing 
decisions, before being sent back out to its next hop.  This 
approach would prove more efficient, but would require more 
invasive software modification (recompiling the kernel).   
•  QRE:  The QRE is centralized in our design and is 
considered the brains of the architecture.  It is the controlling 
unit for each external process and is responsible for every 
flow that traverses the network within this domain.  The 
primary responsibility of the QRE is to maintain a current and 
accurate picture of the path quality between the collaborating 
nodes.  This is achieved by collecting and analyzing the 
UPDATE messages sent from each QRE and maintaining a 
table that contains accessibility information to each node.  A 
modified version of Dijkstra’s algorithm is used as the table 
update algorithm.  Once the path quality of each link is 
known, the QRE has the capability to generate control 
messages and signal to the appropriate nodes specific 
information, depending on the application running atop 
GALO.  
 Available bandwidth estimating techniques can be 
classified into two categories: passive measurement [11, 12] 
and active probing [13, 14, 15]. Passive measurement tools 
use the trace history of existing data transfers. While 
potentially very efficient and accurate, their scope is limited 
to network paths that have recently used passive probing and 
is best initially deployed in an environment where end nodes 
communicate regularly, allowing passive non-invasive 
sampling.  Therefore, in accordance with our primary design 
goal of an immediate deployable solution, GALO uses the 
passive measurement paradigm across a network whose end 
nodes communicate regularly.  One such environment is that 
of a geographically diverse corporate extranet with mail 
servers that have recurrent communication.  In our model, to 
allow bandwidth measurements, we emulate the 
aforementioned environment and create our own data to 
passively sample. 
 To obtain the path quality, artificial traffic is generated 
on each link using a modified version of the sock program 
[3].  Each node (DCE) has specific ports dedicated to 
capturing traffic to generate the path quality measurement, 
namely, in our case the current throughput.  In addition to 
measurement sockets, several control stream sockets are 
reserved for messages between the DCE and QRE.   

 
IV. APPLICATION LAYER SWITCHING 

A. Background 
 Through the years, the Internet has been plagued with 
inefficiency attributable to the lack of load balancing.  Some 
parts of the Internet are much more loaded (hot spots) than 
others for various reasons.  The truth is, there is no wide-
spread load balancing technique within the Internet as we 
know it.  Thus, the path quality is unpredictable, and with 
many links sometimes unacceptable. 



 Application Layer Switching was initially implicitly 
motivated by the work done in [1].  In [1], the authors 
perform a measurement-based study of many different sites, 
comparing performance of flows traversing a default path to 
that of potential alternate paths that were created by 
synthetically appending links.  The primary metrics 
considered were round-trip-time and loss; throughput was 
also peripherally discussed.   
 In this study, the authors used five datasets that were 
collected in 1995 and 1998.  For the loss and round-trip-time 
measurements they used traceroute.  The dataset used for the 
throughput analysis was collected in 1995.  This dataset was 
generated by the program tcpanaly.  It initially was generated 
in [2] and loaned to the authors of [1].  They found that in 30-
80% of the cases, the synthetic alternate paths had better 
quality.  This finding reinforced the fact that the Internet is 
not equally loaded. It also implied that some sort of 
mechanism that could be employed to utilize these 
underutilized links could also improve QoS by taking 
advantage of better path quality on alternate links.  From this, 
we observe that overutilized links can be avoided, thus 
improving the QoS of those flows and increasing the load 
balancing on the Internet.  To enable immediate deployment, 
we suggest that this is done at the Application Layer, by 
using Application Layer Switching to route traffic on 
alternate links. 
 Peripherally considering QoS, the work done in [16], 
suggests using active networking and generic devices on 
workstations to perform application-layer routing.  Other 
noted related work includes the Detour [17] and RoN [18] 
projects.   Though both [1] and [16] discuss the benefit of 
using alternate paths, neither implements an architecture or 
provides results.  We strengthen their work by implementing 
an overlay architecture, extending this architecture using the 
concept of Application Layer Switching that does not require 
any modification to the current infrastructure, and run 
experiments producing encouraging results. 
 

 
Fig. 4. GALO Architecture extended to support Application Layer Switching. 

B. Overview of Application Layer Switching 
 Application Layer Switching (ALSW) is a concept 
introduced to provide a better than traditional, shortest path, 
best-effort routing service to traffic flows.  ALSW can be 

considered a form of QoS-based routing because it has the 
ability to utilize alternate paths to provide an overall better 
path quality.  It can make routing decisions based on more 
than one metric (i.e., shortest path, loss, delay, delay jitter, 
and throughput), as well as help to distribute the traffic load 
among multiple nodes and links in the Internet.  This is 
achieved by constructing non-shortest path routes by 
appending different link combinations with specific metrics 
from the source node to end node. 
 ALSW uses an overlay approach working on top of the 
current best-effort infrastructure.  No modification to current 
routers is necessary.  Accordingly, no state is maintained at 
edge or intermediate routers.  This concept follows the same 
paradigm as DiffServ in that it pushes complexity away from 
the core network.  However, ALSW pushes the complexity 
even further to the edges of the network, all the way to the 
end node itself, making ALSW an immediately deployable 
approach to providing an improvement in current flow QoS. 

C. Application Layer Switching Software Architecture 
 The input to the ALSW module is the path quality table 
that is populated by the QRE.  The ALSW module monitors 
the shared memory segment containing the path quality table. 
The module then queries the path quality table and uses the 
data to generate an optimal alternative path, and thus makes 
the appropriate decision to route reroute a flow.  The optimal 
path algorithm is a variation of the popular Dijkstra’s 
algorithm.   The decision is passed back to the QRE, and the 
QRE messages to the respective DCE to reroute the next 
flow. 
 

 
Fig. 5. Example of a flow rerouted using Application Layer Switching 

 
 To accomplish ALSW, we propose an extension to our 
proposed Generalized Application-Layer Overlay, the 
Application Layer Switching module (Fig. 4).  For ALSW to 
be feasible, we use GALO, which assumes that an abundance 
of trusted, cooperative end nodes (i.e., machines onsite at 
different locations of a major corporation) are in place.  The 
more end nodes and the more geographically diverse they are, 
the more paths to choose from, which increases the likelihood 
of a more desired path.  Once the grid of supporting nodes is 
constructed, path discovery and traffic sampling begins (as 
discussed in Section III).  Periodic updates are broadcast to 
the QRE using the Application Layer Communication  



 
Fig. 6. CDF of the total number of rerouted flow’s average  throughput compared to the 
overall average throughput of the corresponding direct path.  SAMP1. 
 
 

                             
Fig. 7.  CDF of the total number of rerouted flow’s average throughput compared to the 
overall average throughput of the corresponding direct path (SINGLE HOP). SAMP1. 
 
Protocol (ALCP), where it constructs and maintains an 
accessibility table.  This accessibility table is input to the 
ALSW module where, based on specified metrics (we only 
consider throughput), alternate paths are created by 
appending multiple links.  Once the path tree is constructed, 
an optimal path other than the default shortest path can be 
chosen if it meets the desired improvement in path quality.  
Once a better path has been defined, the PROVISION 
message is signaled to the FE on the corresponding path 
nodes to provision the forwarding engine in each node.  
These intermediate forwarding nodes act as switches 
throughout the duration of the rerouted flow (Fig. 5).  Also, 
the source node and the destination node are signaled to 
specify where to send the traffic and where to expect the 
traffic, respectively. The data is sent shortly thereafter.   The 
data maintains the path until a threshold has passed, a shorter 
more direct path with acceptable path quality is found, or 
another path (possibly more hops) is located with a more 
desirable path quality.       

V. PERFORMANCE ANALYSIS 

A. Experimental Setup 
We expanded the initial network discussed in Section II 

to have a total of five end nodes and an additional node used 
to house the QRE. All workstations are shared, general 
purpose machines.   Four of the five end nodes are running 
Linux, both the fifth end node and the node that houses the 
QRE have Solaris as their operation systems.   The default 
file size of each flow was 100KB.  To perform the 
experiments in an efficient manner, we designate two 
separate blocks.   

 
 

 
Fig. 8. CDF of the total number of rerouted flow’s average throughput compared to the 
overall average throughput of the corresponding direct path (MULTIPLE HOP). 
SAMP1. 
 
 

 
Fig. 9.  CDF of the total number of rerouted flow’s average throughput compared to the 
overall average throughput of the corresponding direct path. SAMP1 vs. SAMP2.                                         
 
The sampling block is the period of time that a probe flow3 is 
sent from each source to each destination.   Thus, creating  
traffic to sample, which allows the generation of link 
throughput data.  Within the sampling block, probe flows (a 
total of 20 – one from each source to each destination) are 
generated and monitored.  The probe flows run in series as to 
avoid friendly traffic interference.  The second period is the 
reroute block.  During this period, no probe flows are 
transmitted, only a rerouted flow.  The QRE keeps a running 
average of each default path’s throughput, and synthetically 
creates alternate paths.  It then chooses the path with the 
highest potential increase as the primary candidate for 
rerouting.  During the next reroute cycle, the chosen 
candidate is rerouted over the alternate path.  The alternate 
paths have been limited to a maximum of two hops.  Fig. 9 is 
an illustration of rerouted flow having two hops. 

 In order to efficiently test this architecture, we repeated 
the periods throughout the length of the experiments.  Thus, 
the entire duration of the experiments consisted of the 
repetition of a sample block followed by a reroute block.  The 
default time for both blocks was 130 seconds.  Accordingly, 
every 260 seconds, a new flow was rerouted and the average 
throughput of the default links was updated.  Additional 
scenarios were run where the sample block was twice as long 
as the default case, in order to gauge the effect of sample rate 
on our results.  Moving forward, we label the flows 
associated with the default rate as SAMP1, and the flows 
associated with the total block rate of 520 (meaning both the 
sample and reroute blocks are now 260 seconds) as SAMP2.   
As a result of limited machine access, the code is executed in 
user space.  Over the duration of the experiments 

                                                 
3 Again, the probe flows are only necessary for our experiments.  Normally, this 
architecture would be deployed in an environment where passive sampling would be 
possible. 



approximately 230 rerouted flows were generated for the 
default scenario SAMP1.  The experiments were allowed to 
run the same duration of time for SAMP2 and accordingly, 
approximately half of the amount of flows was generated, due 
to the sampling period being twice that of the default.    

 
B. Results 
In this section, we present the performance analysis of 

the ALSW technique.  We focus on the overall effectiveness 
of ALSW at the default sampling rate.  Additionally, we vary 
sampling rate and decouple multiple/single hop data and 
observe their effect on the flows. 

 
B.1 Rerouted Flows at Default Sampling Rate 

       
 Confirming the hypothesis in Section II-D., Fig. 6 shows 
that around 70% of the flows that were rerouted had a higher 
throughput than that of the average throughput of the default 
path.  Further, these flows had an increase in throughput 
ranging from 1% to over 125% increase in throughput, with 
around half of the flows showing at least a 20% increase in 
average throughput. 
 

B.2 The Effect of Single vs. Multiple Hops 
        As mentioned in the Experimental Setup section, flows 
were allowed to be rerouted over paths containing a single or 
double hop.  Figs. 7 and 8 show separate results for single 
and double hops.  As expected, results worsen when 
considering only multiple hops in that the aforementioned 
overhead is multiplied.  Also, an additional overhead for 
multiple TCP slow-start (a separate TCP connection is 
created at each hop) periods as well as a higher loss 
probability work to degrade the performance of flows 
rerouted over multiple hops.  Though we still see a overall 
benefit when rerouting over multiple hops, we see that when 
single hops are considered alone, we have over 90% of the 
rerouted flows benefiting from rerouting, while only 45% of 
the flows rerouted over multiple hops benefit from ALSW. 
Thus we notice a possible limitation to our current 
implementation as the number of hops increased. 
         

B.3 Rerouted Flows Benefit Varying Sampling Rate  
 Another metric of interest was the sample rate.  A higher 
sampling rate requires more processing and bandwidth 
overhead, therefore the smallest sampling rate is usually 
always desired. The default rate (SAMP1) had a sample block 
of 130 seconds and a reroute block of 130 seconds.  Thus, the 
average throughput for a path was updated every 260 
seconds.  In Fig. 9 we show how doubling this period and 
updating the average throughput every 530 seconds affected 
the number of flows benefiting from ALSW.  When 
observing data generated using both sample rates, we see that 
the number of flows that benefit from this technique is 
directly proportional to the sampling rate.   

VI. CONCLUSION & FUTURE WORK 

In order to access the traffic load balance in the Internet 
we constructed a wide area network, Internet testbed 
comprised of universities across the US.  The findings from 
this performance analysis, as well as larger more extensive 
analyses, show that the Internet suffers severely from 
improper traffic balancing. We proposed a deployable 
approach to improving QoS, by using the GALO overlay 
architecture along with the ALSW extension in order to 
immediately, in a peer-to-peer approach, improve QoS for 
traffic flows.  We show that by merely using alternate paths, 
around 70% of the reroute flows achieved a better average 
throughput than that of the default path.  The encouraging 
results that were shown are a worst case, in that they are 
generated from a testbed that used normal, shared machines 
as routers. It is our conviction that these results can be 
significantly improved by merely using dedicated machines, 
or in addition, in an ideal case, the use of Source Routing.  
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