
Application Layer Switching: A Deployable Technique for Providing Quality of Service
Raheem Beyah, Raghupathy Sivakumar, and John Copeland

School of Electrical and Computer Engineering
Georgia Institute of Technology

Abstract - In this paper, we propose a deployable
approach to improving QoS by using the familiar overlay
architecture approach. The goals of this work are to 1)
create an overlay architecture which allows us to sample
specific path quality metrics among different paths; and 2)
utilize the proposed overlay architecture in order to
implement our proposed QoS-based routing scheme,
Application Layer Switching (ALSW). We show that we
are able to achieve better than best-effort QoS without
modifying intermediate nodes (i.e., routers), thus
encouraging immediate deployment. Additionally, this
research is performed on an actual wide area network
testbed, comprised of universities across the nation. Also,
we assemble this architecture as a peer-to-peer
framework, encouraging collaborating individuals with
average workstations to improve the QoS of their traffic.

I. INTRODUCTION

The Internet has evolved to provide a multitude of
services. In order to accommodate desired real-time services,
or to merely achieve better than best-effort service1, some
level of Quality of Service (QoS) must be established.
Several different techniques have been proposed to resolve
this issue, all of which require a moderate to significant
overhaul of the current Internet infrastructure. We propose a
deployable approach to improving QoS by using a generic,
extendable, overlay architecture; the Generalized Application
Layer Overlay (GALO)

In this paper, we present findings from a multiple-week
study of Internet traffic dynamics using link throughput as the
primary metric. Many traces were conducted through a four
node, mesh-connected, “real world” Internet testbed. We
generate different types of traffic using a generic,
multipurpose, sockets program. Among other things, these
findings show improper load balancing and link utilization
across Internet paths. We synthetically construct alternate
paths showing that 50% of the nodes have a better path
quality if alternate links are used, with an increase in
throughput seen by a flow, ranging from 30% - 120%.
 The aforementioned findings give initial motivation for
the establishment of GALO. GALO provides a mechanism to
obtain the state of the monitored network via invasive or non-
invasive sampling/probing. The sampling/probing is
performed by cooperating end nodes. The GALO
architecture is designed in a modular fashion and has three
primary components: Distributed Client Engine (DCE), QoS

1 Better than best-effort QoS will not suffice for real-time, delay sensitive, traffic; but
can be beneficial for non real-time traffic, e.g., mail transfers between mail servers, or
FTP flows.

Routing Engine (QRE), and the Forwarding Engine (FE).
We extend GALO by introducing the Application Layer

Switching module (ALSW). Application Layer Switching is a
concept introduced to provide a better than traditional,
shortest path, best-effort, routing service to traffic flows.
ALSW is considered a form of QoS-based routing that has
the ability to utilize alternate paths to provide an overall
better path quality. It can make routing decisions based on
more than one metric (i.e., shortest path, loss, delay, delay
jitter, and throughput), as well as help to distribute the traffic
load among multiple nodes and links in the Internet. This is
achieved by constructing non-shortest path routes by
appending different link combinations with specific metrics
from the source node to end node; using end nodes as
switches. We show empirically, that by simply re-routing
traffic over underutilized links, we can, in a deployable
fashion, immediately improve QoS. The performance
analysis of ALSW shows results that 70% of the rerouted
flows experienced a 30%-120% increase in throughput over
the average throughput of the default path.

The rest of this paper is organized as follows: Section II
discusses traffic measurement, our experimental
methodology, findings from the empirical traffic analysis
conducted on our testbed, and the construction of synthetic
alternate paths. In Section III we discuss the motivation and
description of the GALO architecture. Section IV discusses
an extension to GALO, the ALSW module. Section V gives
the performance analysis using ALSW, and Section VI
concludes the paper.

II. ALTERNATE PATH EVALUATION AND
MOTIVATION

A. Background
 Normally, researchers perform empirical studies to
understand precisely the behavior of the network of interest.
These studies are generally helpful but are most accurate for
the particular region of the Internet at the particular time of
measurement. Likewise, our study is most accurate for its
focus region at the times of measurement. From such
focused study, we can only glean and infer principles and
characteristics of general Internet traffic behavior.
Additionally, empirical studies must be performed regularly
due to the inability to predict future types of Internet traffic
and their characteristics.

In our experiment, we use a generic sockets program to
empirically observe Internet traffic dynamics, using
throughput as the primary metric in order to observe traffic
load imbalance over our testbed.

Fig. 1. QoS WAN testbed.

B. Experimental Setup
 We used four end nodes, mesh connected via the
Internet, to conduct our experiments. As such, each node
takes a different route to every other node. The experiments
were bidirectional, so in total, twelve different “paths” were
monitored. The nodes were stationed at universities (US) on
the east and west coast: Georgia Institute of Technology
(GT), North Carolina A&T University (NCAT), University of
California Los Angeles (UCLA), and University of California
Riverside (UCR) (Fig. 1).

We conducted our analysis using a modified version of
the sock program [3]. TCP data transfers were generated.
The transfer duration was varied by modifying the file size.
Each node, at a specified time, assumed the role of client and
server by executing several instances of sock. The sock
program was modified to collect desired information of a
particular flow: IP addresses, port numbers, block size, and
arrival time. Once the scenario was completed, the data was
copied to a central location for later analysis.

 Table 1. Link descriptions.
Link # Link Description
Link 1 UCR->NCAT
Link 2 GT->NCAT
Link 3 UCLA->NCAT
Link 4 UCR->GT
Link 5 NCAT->GT
Link 6 UCLA->GT
Link 7 NCAT->UCR
Link 8 GT->UCR
Link 9 UCLA->UCR
Link 10 UCR->UCLA
Link 11 GT->UCLA
Link 12 NCAT->UCLA

 Fig. 2. Average throughput of each path.

C. Results
Fig. 2 gives the average throughput over the experiment

duration seen by TCP flows over each path. Link 9 appears
to have the greatest average throughout, while Link 1 is
plagued with the stigma of the slowest link. This study
reaffirms what many before it has concluded, the Internet
suffers heavily from load imbalances and even link
asymmetry along the same path. This is a result of link
capacity imbalance as well as variable demands placed on
different links at various times.

D. Alternate Paths
 Until the work done in [1], most literature in the traffic
measurement community stopped at that conclusion drawn
above. However, in [1], Savage et al. discussed how, if
underutilized links were compounded to create alternate paths
to a destination, a significant portion of the flows would have
an alternate path with a higher capacity than the default path.
 Building on the work done in [1], we perform a similar
exercise with our testbed. Based on the above results
(average throughput of each link), using the existing testbed
with four nodes and a total of twelve alternate paths, we
synthetically construct alternate paths for each source node to
each destination node (every node is a source and destination
node). Thus, we have a total of twelve paths (default and
alternate paths) from each source to destination. Fig. 3 shows
a CDF of the throughput of the best alternate path minus the
throughput of the default path, for each source to each
destination. We observe that 50% of the nodes had a better
alternate path with a higher average throughput. Also, Fig. 3
shows the percentage increase ranges from approximately
30% to 120%. Though this synthetic construction of alternate
paths was done offline, it shows first hand the extent of under
utilized links (over time), and motivates the real-time use of
ALSW.

Fig. 3. Best alternate path - default path (%).

III. Generalized Application-Layer Overlay

A. Background

 An overlay architecture is an architecture where the
current infrastructure remains in place and a virtual
infrastructure or network is run atop it. Overlay networks are
often the approach of choice, given that they can provide
instant “results” and can span multiple autonomous systems
without agreement or cooperation of the ISPs, thus avoiding
their logistical conundrum.
 Overlay architectures have been used in various
instances; ranging from mobile networks [7, 8], virtual
private networks [9], computer virus enabling, peer-to-peer
file sharing networks [10], and probably the most popular,
end system multicast [4, 5].

B. GALO Logical Architecture
 Thus far, we have given an overview of QoS and QoS-
based routing. We have also presented an empirical study of
Internet traffic dynamics. The throughput measured in this
empirical study of the WAN links is extracted and used as
motivation for additional work. We now propose an overlay
architecture that will provide the backbone for an
immediately deployable QoS-based routing scheme. In
accordance with past overlay approaches [4, 7, 8, 9, 10], this
scheme requires no modification to intermediate nodes
(routers and switches) and requires only a software upgrade
to collaborating end nodes (workstations). The software
upgrade is minimal in that a user can install the program
without root privileges or any kernel modifications. The
Generalized Application-Layer Overlay (GALO) architecture
is designed in a modular fashion and has three primary
components: Distributed Client Engine (DCE), QoS Routing
Engine (QRE), and the Forwarding Engine (FE). The FE is
optional depending on the extension modules. We plan to
use the data gathered by GALO to perform Application Layer
Switching which requires the FE functionality.
• DCE: The DCE is a process that resides on each
collaborating node. The primary purpose of the DCE is to
transmit path quality updates back to the QRE. The DCE
continuously calculates path quality depending on the
specified metric. In our case throughput is the only metric
considered. Depending on the desired level of path quality
accuracy, the DCE transmits control packets to the QRE.
• FE: The FE resides collocated with the DCE on each
collaborating node. The FE is invoked only at transit nodes.
Its primary responsibility is to act as the switching engine for
passing traffic. Once the appropriate signaling2 is received
from the QRE, the FE dynamically modifies its engine to
allow incoming traffic to be received and switched along the
outgoing path. The FE’s strength lies in its modular design.
The current specification requires that the actual switching
take place at the application layer. This approach has an
obvious inefficiency in that the traffic must traverse the
protocol stack to the application layer to be switched, and
then traverse the stack again to continue to its destination. As
such, this approach initially appears inefficient. Though the
success of this technique is a factor of 1) hardware capacity;
2) processing load of the machine; 3) number of hops for a
rerouted flow; 4) as well as the inefficiencies of traversing the
entire protocol stack twice; we show (in Section V) that this
delay will be negligible and a significant amount of the
rerouted flows benefit from this technique. Also, this
approach is desired because it is directly in line with our
goals of no modification to the intermediate infrastructure
and minimum modification to the end nodes. Another
possible approach is to use Source Routing between nodes.
This would require that each collaborating node support

2 The Application Layer Communication Protocol (ALCP) is the corresponding
signaling/communications protocol that was designed to support this architecture. Due
to space limitations, the description of the ALCP is not presented.

Source Routing and would be more efficient, as the traffic
would only have to go to the network layer for routing
decisions, before being sent back out to its next hop. This
approach would prove more efficient, but would require more
invasive software modification (recompiling the kernel).
• QRE: The QRE is centralized in our design and is
considered the brains of the architecture. It is the controlling
unit for each external process and is responsible for every
flow that traverses the network within this domain. The
primary responsibility of the QRE is to maintain a current and
accurate picture of the path quality between the collaborating
nodes. This is achieved by collecting and analyzing the
UPDATE messages sent from each QRE and maintaining a
table that contains accessibility information to each node. A
modified version of Dijkstra’s algorithm is used as the table
update algorithm. Once the path quality of each link is
known, the QRE has the capability to generate control
messages and signal to the appropriate nodes specific
information, depending on the application running atop
GALO.
 Available bandwidth estimating techniques can be
classified into two categories: passive measurement [11, 12]
and active probing [13, 14, 15]. Passive measurement tools
use the trace history of existing data transfers. While
potentially very efficient and accurate, their scope is limited
to network paths that have recently used passive probing and
is best initially deployed in an environment where end nodes
communicate regularly, allowing passive non-invasive
sampling. Therefore, in accordance with our primary design
goal of an immediate deployable solution, GALO uses the
passive measurement paradigm across a network whose end
nodes communicate regularly. One such environment is that
of a geographically diverse corporate extranet with mail
servers that have recurrent communication. In our model, to
allow bandwidth measurements, we emulate the
aforementioned environment and create our own data to
passively sample.
 To obtain the path quality, artificial traffic is generated
on each link using a modified version of the sock program
[3]. Each node (DCE) has specific ports dedicated to
capturing traffic to generate the path quality measurement,
namely, in our case the current throughput. In addition to
measurement sockets, several control stream sockets are
reserved for messages between the DCE and QRE.

IV. APPLICATION LAYER SWITCHING

A. Background
 Through the years, the Internet has been plagued with
inefficiency attributable to the lack of load balancing. Some
parts of the Internet are much more loaded (hot spots) than
others for various reasons. The truth is, there is no wide-
spread load balancing technique within the Internet as we
know it. Thus, the path quality is unpredictable, and with
many links sometimes unacceptable.

 Application Layer Switching was initially implicitly
motivated by the work done in [1]. In [1], the authors
perform a measurement-based study of many different sites,
comparing performance of flows traversing a default path to
that of potential alternate paths that were created by
synthetically appending links. The primary metrics
considered were round-trip-time and loss; throughput was
also peripherally discussed.
 In this study, the authors used five datasets that were
collected in 1995 and 1998. For the loss and round-trip-time
measurements they used traceroute. The dataset used for the
throughput analysis was collected in 1995. This dataset was
generated by the program tcpanaly. It initially was generated
in [2] and loaned to the authors of [1]. They found that in 30-
80% of the cases, the synthetic alternate paths had better
quality. This finding reinforced the fact that the Internet is
not equally loaded. It also implied that some sort of
mechanism that could be employed to utilize these
underutilized links could also improve QoS by taking
advantage of better path quality on alternate links. From this,
we observe that overutilized links can be avoided, thus
improving the QoS of those flows and increasing the load
balancing on the Internet. To enable immediate deployment,
we suggest that this is done at the Application Layer, by
using Application Layer Switching to route traffic on
alternate links.
 Peripherally considering QoS, the work done in [16],
suggests using active networking and generic devices on
workstations to perform application-layer routing. Other
noted related work includes the Detour [17] and RoN [18]
projects. Though both [1] and [16] discuss the benefit of
using alternate paths, neither implements an architecture or
provides results. We strengthen their work by implementing
an overlay architecture, extending this architecture using the
concept of Application Layer Switching that does not require
any modification to the current infrastructure, and run
experiments producing encouraging results.

Fig. 4. GALO Architecture extended to support Application Layer Switching.

B. Overview of Application Layer Switching
 Application Layer Switching (ALSW) is a concept
introduced to provide a better than traditional, shortest path,
best-effort routing service to traffic flows. ALSW can be

considered a form of QoS-based routing because it has the
ability to utilize alternate paths to provide an overall better
path quality. It can make routing decisions based on more
than one metric (i.e., shortest path, loss, delay, delay jitter,
and throughput), as well as help to distribute the traffic load
among multiple nodes and links in the Internet. This is
achieved by constructing non-shortest path routes by
appending different link combinations with specific metrics
from the source node to end node.
 ALSW uses an overlay approach working on top of the
current best-effort infrastructure. No modification to current
routers is necessary. Accordingly, no state is maintained at
edge or intermediate routers. This concept follows the same
paradigm as DiffServ in that it pushes complexity away from
the core network. However, ALSW pushes the complexity
even further to the edges of the network, all the way to the
end node itself, making ALSW an immediately deployable
approach to providing an improvement in current flow QoS.

C. Application Layer Switching Software Architecture
 The input to the ALSW module is the path quality table
that is populated by the QRE. The ALSW module monitors
the shared memory segment containing the path quality table.
The module then queries the path quality table and uses the
data to generate an optimal alternative path, and thus makes
the appropriate decision to route reroute a flow. The optimal
path algorithm is a variation of the popular Dijkstra’s
algorithm. The decision is passed back to the QRE, and the
QRE messages to the respective DCE to reroute the next
flow.

Fig. 5. Example of a flow rerouted using Application Layer Switching

 To accomplish ALSW, we propose an extension to our
proposed Generalized Application-Layer Overlay, the
Application Layer Switching module (Fig. 4). For ALSW to
be feasible, we use GALO, which assumes that an abundance
of trusted, cooperative end nodes (i.e., machines onsite at
different locations of a major corporation) are in place. The
more end nodes and the more geographically diverse they are,
the more paths to choose from, which increases the likelihood
of a more desired path. Once the grid of supporting nodes is
constructed, path discovery and traffic sampling begins (as
discussed in Section III). Periodic updates are broadcast to
the QRE using the Application Layer Communication

Fig. 6. CDF of the total number of rerouted flow’s average throughput compared to the
overall average throughput of the corresponding direct path. SAMP1.

Fig. 7. CDF of the total number of rerouted flow’s average throughput compared to the
overall average throughput of the corresponding direct path (SINGLE HOP). SAMP1.

Protocol (ALCP), where it constructs and maintains an
accessibility table. This accessibility table is input to the
ALSW module where, based on specified metrics (we only
consider throughput), alternate paths are created by
appending multiple links. Once the path tree is constructed,
an optimal path other than the default shortest path can be
chosen if it meets the desired improvement in path quality.
Once a better path has been defined, the PROVISION
message is signaled to the FE on the corresponding path
nodes to provision the forwarding engine in each node.
These intermediate forwarding nodes act as switches
throughout the duration of the rerouted flow (Fig. 5). Also,
the source node and the destination node are signaled to
specify where to send the traffic and where to expect the
traffic, respectively. The data is sent shortly thereafter. The
data maintains the path until a threshold has passed, a shorter
more direct path with acceptable path quality is found, or
another path (possibly more hops) is located with a more
desirable path quality.

V. PERFORMANCE ANALYSIS

A. Experimental Setup
We expanded the initial network discussed in Section II

to have a total of five end nodes and an additional node used
to house the QRE. All workstations are shared, general
purpose machines. Four of the five end nodes are running
Linux, both the fifth end node and the node that houses the
QRE have Solaris as their operation systems. The default
file size of each flow was 100KB. To perform the
experiments in an efficient manner, we designate two
separate blocks.

Fig. 8. CDF of the total number of rerouted flow’s average throughput compared to the
overall average throughput of the corresponding direct path (MULTIPLE HOP).
SAMP1.

Fig. 9. CDF of the total number of rerouted flow’s average throughput compared to the
overall average throughput of the corresponding direct path. SAMP1 vs. SAMP2.

The sampling block is the period of time that a probe flow3 is
sent from each source to each destination. Thus, creating
traffic to sample, which allows the generation of link
throughput data. Within the sampling block, probe flows (a
total of 20 – one from each source to each destination) are
generated and monitored. The probe flows run in series as to
avoid friendly traffic interference. The second period is the
reroute block. During this period, no probe flows are
transmitted, only a rerouted flow. The QRE keeps a running
average of each default path’s throughput, and synthetically
creates alternate paths. It then chooses the path with the
highest potential increase as the primary candidate for
rerouting. During the next reroute cycle, the chosen
candidate is rerouted over the alternate path. The alternate
paths have been limited to a maximum of two hops. Fig. 9 is
an illustration of rerouted flow having two hops.

 In order to efficiently test this architecture, we repeated
the periods throughout the length of the experiments. Thus,
the entire duration of the experiments consisted of the
repetition of a sample block followed by a reroute block. The
default time for both blocks was 130 seconds. Accordingly,
every 260 seconds, a new flow was rerouted and the average
throughput of the default links was updated. Additional
scenarios were run where the sample block was twice as long
as the default case, in order to gauge the effect of sample rate
on our results. Moving forward, we label the flows
associated with the default rate as SAMP1, and the flows
associated with the total block rate of 520 (meaning both the
sample and reroute blocks are now 260 seconds) as SAMP2.
As a result of limited machine access, the code is executed in
user space. Over the duration of the experiments

3 Again, the probe flows are only necessary for our experiments. Normally, this
architecture would be deployed in an environment where passive sampling would be
possible.

approximately 230 rerouted flows were generated for the
default scenario SAMP1. The experiments were allowed to
run the same duration of time for SAMP2 and accordingly,
approximately half of the amount of flows was generated, due
to the sampling period being twice that of the default.

B. Results
In this section, we present the performance analysis of

the ALSW technique. We focus on the overall effectiveness
of ALSW at the default sampling rate. Additionally, we vary
sampling rate and decouple multiple/single hop data and
observe their effect on the flows.

B.1 Rerouted Flows at Default Sampling Rate

 Confirming the hypothesis in Section II-D., Fig. 6 shows
that around 70% of the flows that were rerouted had a higher
throughput than that of the average throughput of the default
path. Further, these flows had an increase in throughput
ranging from 1% to over 125% increase in throughput, with
around half of the flows showing at least a 20% increase in
average throughput.

B.2 The Effect of Single vs. Multiple Hops
 As mentioned in the Experimental Setup section, flows
were allowed to be rerouted over paths containing a single or
double hop. Figs. 7 and 8 show separate results for single
and double hops. As expected, results worsen when
considering only multiple hops in that the aforementioned
overhead is multiplied. Also, an additional overhead for
multiple TCP slow-start (a separate TCP connection is
created at each hop) periods as well as a higher loss
probability work to degrade the performance of flows
rerouted over multiple hops. Though we still see a overall
benefit when rerouting over multiple hops, we see that when
single hops are considered alone, we have over 90% of the
rerouted flows benefiting from rerouting, while only 45% of
the flows rerouted over multiple hops benefit from ALSW.
Thus we notice a possible limitation to our current
implementation as the number of hops increased.

B.3 Rerouted Flows Benefit Varying Sampling Rate
 Another metric of interest was the sample rate. A higher
sampling rate requires more processing and bandwidth
overhead, therefore the smallest sampling rate is usually
always desired. The default rate (SAMP1) had a sample block
of 130 seconds and a reroute block of 130 seconds. Thus, the
average throughput for a path was updated every 260
seconds. In Fig. 9 we show how doubling this period and
updating the average throughput every 530 seconds affected
the number of flows benefiting from ALSW. When
observing data generated using both sample rates, we see that
the number of flows that benefit from this technique is
directly proportional to the sampling rate.

VI. CONCLUSION & FUTURE WORK

In order to access the traffic load balance in the Internet
we constructed a wide area network, Internet testbed
comprised of universities across the US. The findings from
this performance analysis, as well as larger more extensive
analyses, show that the Internet suffers severely from
improper traffic balancing. We proposed a deployable
approach to improving QoS, by using the GALO overlay
architecture along with the ALSW extension in order to
immediately, in a peer-to-peer approach, improve QoS for
traffic flows. We show that by merely using alternate paths,
around 70% of the reroute flows achieved a better average
throughput than that of the default path. The encouraging
results that were shown are a worst case, in that they are
generated from a testbed that used normal, shared machines
as routers. It is our conviction that these results can be
significantly improved by merely using dedicated machines,
or in addition, in an ideal case, the use of Source Routing.

REFERENCES
[1] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The

End-to-End effects of Internet path selection,” in Proceedings of the
ACM SIGCOMM, Oct. 1999, vol. 29, pp. 289-299.

[2] V. Paxson, “End-to-End Internet packet dynamics”, ACM SIGCOMM
'97, September 1997.

[3] W.R. Stevens, TCP/IP Illustrated Volume 1: the protocols. Boston,
MA: Addison Wesley, 1994.

[4] H. Erikson. “MBONE: The Multicast Backbone”. Communication of
the ACM, pages 54–60, August 1994.

[5] M. Macedonia, D. Brutzman, "MBone provides audio and video across
the Internet," IEEE Computer, Vol.27 #4, April 1994, pp. 30-36.

[6] How to Debug an MBone Session.
http://www.informatik.unimannheim.de/informatik/pi4/projects/Cost26
4/HowToDebugMBone.html. April 2002.

[7] M. Stemm, "Vertical Handoffs in Wireless Overlay Networks,"
Master's thesis, UC Berkeley, May 1996.

[8] R. Katz and E. Brewer. “Wireless Overlay Networks and Adaptive
Applications.” In the Proceedings of MobiCom 1996.

[9] VPN Overlay Networks: An Answer To Network-Based IP VPNs?
http://networkmagazine.com. February 2002.

[10] Stephanos and Androutsellis-Theotokis. White Paper: A Survey of
Peer-to-Peer File Sharing Technologies. ELTRUN, Athens University
of Economics and Business, Greece.

[11] S. Seshan, M. Stemm, and R. Katz. Spand. “Shared passive network
performance discovery.” In the Proceedings of Usenix Symposium on
Internet Technologies and Systems, Monterey, CA, December 1997.

[12] M. Stemm, S. Seshan, and Randy H. Katz. “A network measurement
architecture for adaptive applications.” In the Proceedings of IEEE
Infocom 2000, Monterey, CA, March 2000.

[13] B. Mah. pchar: A tool for measuring internet path characteristics, 2001.
 http://www.employees.org/ bmah/Software/pchar/.
[14] V. Jacobson. pathchar - a tool to infer characteristics of internet paths,

1997. presented as April 97 MSRI talk.
[15] N. Hu and P. Steenkiste. Estimating Available Bandwidth Using

Packet Pair Probing. Sept. 2002 CMU-CS-02-166. Technical Report.
[16] A. Ghosh, M. Fry, and J. Crowcroft. “An Architecture for Application

Layer Routing.” In the Proceedings of IWAN 2000.
[17] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell, A.

Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Zahorjan,
"Detour: a Case for Informed Internet Routing and Transport," IEEE
Micro, pp. 50-59, v 19, no 1, January 1999.

[18] D. Andersen, H. Balakrishnan, M. Kaashoek, R. Morris, "Resilient
Overlay Networks," Proc. 18th ACM SOSP, Banff, Canada, October
2001.

