
A Transport Layer Approach for Achieving
Aggregate Bandwidths on Multi-homed Mobile Hosts ∗

Hung-Yun Hsieh and Raghupathy Sivakumar
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332, USA

{hyhsieh, siva}@ece.gatech.edu

ABSTRACT
Due to the availability of a wide variety of wireless access technolo-
gies, a mobile host can potentially have subscriptions and access to
more than one wireless network at a given time. In this paper, we
consider such a multi-homed mobile host, and address the prob-
lem of achieving bandwidth aggregation by striping data across the
multiple interfaces of the mobile host. We show that both link layer
striping approaches and application layer techniques that stripe data
across multiple TCP sockets do not achieve the optimal bandwidth
aggregation due to a variety of factors specific to wireless networks.
We propose an end-to-end transport layer approach called pTCP
that effectively performs bandwidth aggregation on multi-homed
mobile hosts. We show through simulations that pTCP achieves
the desired goals under a variety of network conditions.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols

General Terms
Algorithms, Design, Performance

Keywords
Multi-homed mobile host, Bandwidth aggregation, Striping

1. INTRODUCTION
The explosive growth in the number of mobile Internet users has

been accompanied by the equally staggering increase in the number
of wireless access technologies. A mobile user today can choose
from a myriad of options ranging from networks such as Global-
star or Iridium for satellite access, CDPD, GPRS, EDGE, or 3G for
wide area access, Ricochet for metropolitan area access, and IEEE

∗This work was sponsored by the National Science Foundation un-
der award #0117840, and Yamacraw.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MOBICOM’02, September 23–26, 2002, Atlanta, Georgia, USA.
Copyright 2002 ACM 1-58113-486-X/02/0009 ...$5.00.

802.11 or HiperLAN based networks for local area access. An in-
teresting and obvious challenge that arises when such independent
options exist is: How can these technologies co-exist in providing
the best wireless access possible to mobile users?

As a first step towards addressing this challenge, approaches
have been proposed for performing vertical handoffs from one net-
work to another as the mobile user migrates across coverage areas
[19]. When the coverage areas of two networks overlap (say wide
area and local area), the user is provided access through the higher
data rate connection. In this paper, we consider an identical sce-
nario of a mobile host having multiple wireless interfaces. How-
ever, instead of the mobile host being provided access only through
one of its interfaces, we consider the problem of providing simul-
taneous access through all of its active interfaces. For example,
if a user is subscribed to both a wide-area wireless network with
a data rate of 2Mbps indoors (e.g. 3G systems), and a local-area
wireless network with an effective data rate of 5Mbps (e.g. IEEE
802.11), assuming that the user is within range of the access points
of both networks we address the following question: Can an ap-
plication that requires reliable and sequenced delivery of data be
provided a data rate of 7Mbps through the use of both interfaces?
Since TCP is by far the most dominant protocol used for reliable
and sequenced data delivery, we use TCP in all of our discussions
henceforth and use the generic term sockets to refer to TCP sockets.

A simple approach to aggregate bandwidths would be to use mul-
tiple sockets, one each for every active interface, and use applica-
tion layer striping and resequencing. In fact, similar schemes have
been proposed to improve application layer throughput, albeit in a
different context where such striping is done on sockets that share
a long-fat path and the goal is to fill the bandwidth-delay product
of the path (which otherwise will be impossible without both ends
supporting the window scaling option) [2, 17]. However, in the
context of multi-homed mobile hosts, it turns out that such an ap-
proach not only fails to achieve the aggregate data rate, but in the
specific case of the connections having vastly differing bandwidth-
delay products can result in the effective aggregate data rate be-
ing lower than the data rate of the slowest connection! While we
identify the reasons involved and discuss them in detail in Section
2, briefly the performance degradation occurs due to head-of-line
blocking at the resequencing buffer of the receiving application.
Pending packet arrivals at the receiving end of the slower connec-
tion stall the TCP sender of the faster connection, which eventually
enters persist mode because of zero window advertisement by its
receiving end [22].

Link layer striping schemes assuming stable link characteris-
tics have been proposed earlier [6, 21] for bandwidth aggregation.
However, such schemes are unfortunately inapplicable to wireless

links. Even with an adaptive mechanism that monitors the quality
of wireless links and stripes accordingly [18], optimal bandwidth
aggregation still cannot be achieved in the context of multi-homed
mobile hosts where different interfaces potentially belong to dif-
ferent access networks. In [1], the authors propose a “channel”
striping algorithm where a channel is defined as a logical FIFO
path at any layer of the protocol stack including the transport layer.
We discuss in Section 7 why this approach exhibits drawbacks and
limitations that specifically pertain to link layer striping schemes.

In this paper, our goal is to study the problems involved in achiev-
ing bandwidth aggregation when an application on a mobile host
uses multiple interfaces simultaneously, and propose a transport
layer approach that effectively addresses the problems. To this end,
we propose a purely end-to-end transport layer approach called
pTCP (parallel TCP) and present it as a wrapper around a slightly
modified version of TCP that we refer to as TCP-v (TCP-virtual).
For each pTCP socket opened by an application, pTCP opens and
maintains one TCP-v connection for every interface over which
the connection is to be striped on. pTCP manages the send buffer
across all the TCP-v connections and decouples loss recovery from
congestion control, performs intelligent striping of data across the
TCP-v connections, does data reallocation to handle variances in
the bandwidth-delay product of the individual connections, redun-
dantly stripes data during catastrophic periods (such as blackouts
or resets), and has a well defined interface with TCP-v that allows
different congestion control schemes to be used by the different
TCP-v connections. We show through ns2 [15] based simulations
that pTCP outperforms both simple and sophisticated schemes em-
ployed at the application layer. Although we present pTCP as a
transport layer solution for simplicity, it can be implemented as a
true session layer solution provided sufficient support is provided
by the transport layer. The contributions of this work can thus be
summarized as follows:

1. We consider mobile hosts that have multiple interfaces cor-
responding to independent wireless access networks, and in-
vestigate why using multiple sockets with application layer
support does not result in the desired bandwidth aggregation.

2. We propose an end-to-end transport layer approach called
pTCP that effectively provides applications with the aggre-
gate bandwidths available through the multiple interfaces at
a mobile host.

The rest of the paper is organized as follows: Section 2 discusses
why using multiple sockets does not result in aggregate bandwidths.
Section 3 presents the assumptions and key tenets of the pTCP de-
sign. Section 4 describes the pTCP approach in detail along with
the pTCP state diagram, handshakes, and packet header formats.
Section 5 provides simulation results of the pTCP approach. Sec-
tion 6 revisits several assumptions and considers the impact of re-
laxing them. It also discusses several deployment issues for pTCP.
Finally, Section 7 discusses related work and Section 8 concludes
the paper.

2. MOTIVATION
In this section, we consider an approach wherein the applica-

tion opens multiple TCP sockets, one each for every interface, and
performs striping of data across the different sockets to achieve
bandwidth aggregation. We consider both an unaware applica-
tion that has no knowledge of the underlying connection data rates,
and a smart application that has some knowledge of the available
data rates (which will consequently enable it to stripe more intel-
ligently). In the former case, when a socket blocks on a write, the

sending application moves to the next socket and so on. In the lat-
ter case, the sending application stripes data based on a ratio deter-
mined by estimation of the available rates on the different connec-
tions (or pipes1). Since the goal is to perform reliable in-sequence
data delivery, the receiving application does the resequencing us-
ing a finite resequencing buffer. For simplicity, we assume applica-
tion level sequence numbers to facilitate the resequencing process,
and restrict our discussions to packet streams as opposed to byte
streams. The receiving application continues to read packets from
each socket as long as its resequencing buffer has available space.
When the application buffer is full, it stops reading from sockets
that have already delivered packets with sequence numbers larger
than the next expected application level sequence number. It then
enters a peek mode2 where it peeks into the next available packet
in each of the other sockets and reads a packet only when it is the
next in-sequence packet. Note that if the application buffer size is
zero, the application will always read in-sequence packets from the
sockets. On the other hand, increasing the size of the application
buffer has the effect of reducing the chances of the faster pipe being
stalled by the slower one. We elaborate on this phenomenon later
in this section when we discuss the impact of data rate differential
among the multiple pipes.

We now proceed to identify the key constraints of such an appli-
cation layer striping approach:

• Data Rate Differential:

When the data rates of the pipes used by the unaware appli-
cation are different, the aggregate bandwidth achieved by the
simple approach remains a tight function of the data rate of
the slowest pipe. This can intuitively be explained as follows:
Consider two pipes with data rates of 10Mbps and 2Mbps re-
spectively. Since the application stripes data by keeping the
send buffer of each pipe filled, a send-buffer’s worth of appli-
cation data will be injected to the first (10Mbps) pipe (let this
block of data be B1). Blocked by the first pipe, the applica-
tion will then proceed to inject data into the second (2Mbps)
pipe (let this block of data be B2). Because the first pipe will
drain data faster, the application will, after filling the second
pipe, inject more data into the first pipe (let this block of data
be B3). Assume that because of the data rate difference, the
first pipe delivers B3 before B2 is drained out by the second
pipe.

Since the additional data (block B3) will be out-of-order, it
will be queued up in the resequencing buffer of the receiving
application pending the arrival of the entire block of data B2

through the second pipe. Because the first pipe will continue
to transfer data at a faster rate, this will eventually result in
the application’s resequencing buffer overflowing. The re-
ceiving application will thereupon stop reading data from
the first pipe, which in turn will cause the first pipe’s TCP
receiver buffer to fill up. The TCP receiver will then ad-
vertise a window size of zero, completely stalling the first
pipe. Once the in-sequence data (block B2), sent originally
through the second pipe, reaches the receiver and hence re-
leases space in the resequencing buffer, the first pipe will
become active again. Note that such head-of-line blocking
is indeed an artifact of the unaware striping mechanism used

1We refer to the individual connections as pipes from hereon to
differentiate them from the aggregate end-to-end connection.
2The recv() socket call and its variants support a peek flag that
when set allows the receive operation to retrieve data from the be-
ginning of the receive buffer without removing that data from the
buffer [22].

by the application. One way of reducing the above coupling
between the faster and slower pipes is to increase the rese-
quencing buffer size at the application layer. The larger the
buffer size, the more the time for which the faster pipe can
remain active without being inhibited through flow control.
Specifically, if the two pipes have bandwidths of R1 and
R2 (R1 < R2) respectively and equal delays, the applica-
tion buffer required in steady state to effectively aggregate
bandwidths is R2

R1

∗W , where W is the default socket buffer
size. Even assuming that the above buffer requirements can
be accommodated, such buffering still cannot handle stalls
that occur due to losses in the slower pipe. Also, even if the
application does smart striping, such a problem will exist as
long as the striping ratio does not exactly match the data rate
ratio of the different pipes. We elaborate on this issue in the
next constraint. Furthermore, in TCP the performance degra-
dation for the simple approach is severe because of another
phenomenon: persist timers. When the sender of the faster
pipe receives a window advertisement of zero, it enters per-
sist mode. If the single window update from the receiver hap-
pens to be lost (either due to congestion or random wireless
losses), the sender probes the receiver only after the persist
timer expires next (5 seconds). The persist timer value dou-
bles after every unsuccessful probe and is capped only at 60
seconds [22]. While this effectively brings down the progress
of the faster pipe to a crawl, the impact is more severe as the
slower pipe can potentially enter persist mode because of the
persist-timer induced stalling of the faster pipe! Hence, in
TCP the effect of the data rate differential among the differ-
ent pipes can potentially be catastrophic to the application,
resulting in the aggregate throughput being lower than the
data rate of the slowest pipe. We present results in Section 5
that illustrate this phenomenon.

• Fluctuating Data Rates:

Although the problem due to data rate differential can be
overcome by employing an intelligent striping scheme, per-
forming such intelligent striping is inherently a difficult prob-
lem because of two reasons: (i) The pipes are end-to-end
pipes that traverse multiple hops between the sender and the
receiver, and the available bandwidth is likely to fluctuate
dynamically; and (ii) Given the dynamic nature of wireless
link characteristics, it is very likely that the pipes will ex-
hibit highly varying data rates. When the application stripes
based on the estimated data rates of the pipes, and the data
rates change, the very purpose of intelligent striping is de-
feated resulting in degraded performance. Note that the dy-
namic characteristics of the wireless link, and the consequent
difficulty in performing accurate rate estimation is only part
of the reason for the degraded performance. The coupling
of congestion control and loss recovery (for the aggregate
connection) that exists because of the individual TCP pipes
functioning independent of each other is also a contributing
factor. For example, packets assigned to a TCP pipe by an
application cannot be “withdrawn” from that pipe, notwith-
standing any bandwidth reduction the pipe may experience.
Thus, if bandwidth reduction were to occur, packets assigned
to the pipe that have not yet been transmitted due to lack
of space in the reduced congestion window cannot be reas-
signed to another active pipe.

• Blackouts:

Blackouts are extreme cases of rate fluctuations where the

available data rate falls to zero and remains at zero for an ex-
tended period of time. Causes for such phenomena include
temporary loss in connectivity (e.g. when the user is pass-
ing through a tunnel), fading, interference from a moving
source, etc. Observations on the occurrence of such phe-
nomena have been made in related work [16]. In the multi-
ple sockets approach, such blackouts on one or a subset of
the pipes will stall the entire aggregate connection because
of buffer overflow at the receiving application. This is obvi-
ously an undesirable phenomenon. While the only solution
to this problem is to have some feedback mechanism at the
application layer (for the application to realize that a par-
ticular pipe has stalled), this will substantially increase the
overhead and complexity in the application.

• Application Complexity:

Although the above application layer approaches are simple
in the sense that they do not require any protocol changes at
the transport layer, the complexity and overhead at the appli-
cation layer is considerable. Essentially the application has
to implement a resequencing mechanism over the reordering
already performed within each pipe by TCP. Sequence num-
bers that facilitate the resequencing have to be included in ap-
plication defined headers, and the application has to explic-
itly ensure that the application layer “segments” (that have
unique application layer sequence numbers) do not get frag-
mented. One conceivable way the application can ensure that
application layer segments are not fragmented is to write ex-
actly one MSS worth of data during every write. If nagling is
enabled [12], this would achieve the desired goal. Similarly,
in order to stripe intelligently, the application will have to re-
dundantly implement a bandwidth estimation mechanism in
spite of the bandwidth estimation already performed by TCP
through its congestion control mechanism. Furthermore, in
order to solve the problems identified as consequences of
blackouts, the application will have to implement a feedback
mechanism to recover from pipes that are stalled, and in ef-
fect duplicate both the reordering and loss recovery mecha-
nisms already implemented by TCP for the individual pipes.
It is clearly undesirable to overload applications in such a
manner when all applications on the mobile host would re-
quire similar functionality. Note that the above arguments
would also hold for session layer approaches in the absence
of appropriate interfaces between the session layer and the
transport layer.

• Multiple Congestion Control Schemes:

Since different wireless network technologies possess very
diverse characteristics in terms of throughput, delay, jitter,
loss rates, etc., approaches to improve TCP performance over
wireless networks have typically been proposed for specific
scenarios. For example, while snoop [5] has been proposed
primarily for WLANs, [16] shows that snoop is inappropriate
in WWANs due its key assumption that wireless link delays
are insignificant when compared to the end-to-end delays.
WTCP, proposed in [16] for WWANs, however will stand
inappropriate in WLANs due its reliance on inter-packet sep-
aration as the key congestion metric. WWANs have low data
rates that result in the inter-packet delay being large, which
in turn makes it a robust and realistic metric to use. However,
in WLANs where bandwidths can be in the order of tens of
megabits per second, it no longer serves as a reliable con-
gestion metric. Similarly, approaches such as [8] to specif-

ically improve TCP’s performance over satellite links that
possess very large bandwidth-delay products have also been
proposed. When a mobile host has multiple interfaces, a con-
ceivable scenario (until a unified transport layer framework
is derived) is one where interface-specific transport proto-
cols will be used. In the simple application layer striping
approach, besides the numerous roles assigned to the appli-
cation, the task of choosing an appropriate transport protocol
for the different pipes will also rely on the application.

3. THE PTCP DESIGN
In this section, we present the key design elements of the pTCP

approach that overcome the drawbacks identified earlier for the ap-
plication layer approaches. The following assumptions are made
for the basic design of pTCP: (i) Mobile hosts have multiple in-
terfaces, which they would ideally like to use simultaneously for
a single application connection; (ii) Both the sender and the re-
ceiver support pTCP; (iii) The bandwidth bottlenecks are purely in
the wireless links for the individual pipes; and (iv) The application
should ideally be unaware of the striping process. Briefly, assump-
tion (iii) is to ensure TCP-friendliness of the aggregate connection
in the backbone Internet where paths of multiple pipes may merge.
While we make the assumptions primarily for simplifying the pre-
sentation of pTCP, we revisit assumptions (ii) and (iii) in Section 6
and discuss the required modifications to pTCP if the assumptions
are to be relaxed.

The pTCP approach is based on the following five key design
elements:

• Decoupled Congestion Control and Reliability:

As described in Section 1, pTCP is a wrapper around a mod-
ified TCP that we refer to as TCP-v. While we present the
details of the interaction between pTCP and TCP-v in Sec-
tion 4, briefly pTCP maintains and controls a single send
buffer across all the TCP-v pipes for the aggregate connec-
tion. The individual TCP-v pipes perform congestion control
and loss recovery just like regular TCP. However, any seg-
ment transmission by a TCP-v is preceded by an explicit call
to pTCP requesting for application data. Since pTCP has
control over the buffer, a retransmission at the TCP-v level
does not need to be a retransmission at the pTCP level. How-
ever, the amount of data that can be sent out through each
TCP-v pipe is strictly determined by the TCP congestion
control algorithm employed by each respective pipe. There-
fore, TCP-v controls the amount of data that can be sent
while pTCP controls which data to send. In this fashion,
pTCP decouples congestion control and reliability. We de-
scribe as we go along how the decoupling contributes to im-
proved performance and functionality in pTCP.

• Congestion Window Based Data Striping:

When a TCP-v pipe has space in its congestion window for
transmissions, it requests pTCP for data. If there exists no
unsent data, pTCP registers the concerned TCP-v pipe as an
active pipe and returns NO DATA. The TCP-v pipe then waits
for a subsequent resume call from pTCP before requesting
for data again. When pTCP receives new data from the ap-
plication, it issues the resume call only to those TCP-v pipes
that are registered as active. Note that such striping is dif-
ferent from striping that is conditional on buffer availability
(as seen in the simple application layer approach). In pTCP,
data will be given to a TCP-v pipe only when there is space
in its congestion window for the data to be sent. Note that

this inherently assumes the congestion window to be a true
representative of the bandwidth-delay product of the pipe.
While the TCP congestion window is an approximation of
the bandwidth-delay product, it is possible that it is an in-
correct estimation (say, for example, due to deep buffers in
the network). We revisit this issue in Section 6. The strip-
ing of data based on the congestion window of the individual
pipes removes the problem that arises due to differences in
the rates of the pipes, provided there is no fluctuation in the
available bandwidth.

• Dynamic Reassignment during Congestion:

Recall that it is possible for the congestion window to be an
over-estimate especially just before congestion occurs. This
can result in an undesirable hold up of data in pipes where the
congestion window was reduced recently. For example, con-
sider a scenario in which the congestion window of pipe pi is
cwndi. If cwndi worth of data is assigned to pi, and the win-
dow is cut down to cwndi

2
due to bandwidth fluctuations, the

cwndi

2
worth of data that falls outside the congestion window

of pi will be blocked from transmission till the cwndi opens
up. In the meantime, this is equivalent to a static scenario in
which the application undesirably assigned more data than
what a pipe can carry and in the process slows down other
faster pipes. pTCP solves this problem by leveraging the
decoupling that exists between congestion control and re-
liability. When a pipe experiences congestion, irrespective
of whether the detection is through duplicate acknowledge-
ments or a timeout, the window is reduced (by half in the
former and to one in the latter). If the congestion window of
a pipe is thus reduced, pTCP immediately unbinds the data
that was bound to the sequence numbers of the concerned
pipe that fall outside the current congestion window. Thus, if
another pipe has space in its congestion window and requests
for data, the unbound data is now available for reassignment
to that pipe. When the original pipe requests for data cor-
responding to the same sequence number that was unbound,
new application data is bound by pTCP and returned to the
pipe. Such a reassignment strategy greatly improves the per-
formance of pTCP under dynamic conditions, as we illus-
trate through simulation results in Section 5. The trade-offs
of the reassignment strategy is the potential overhead of per-
forming unnecessary retransmissions. Our simulation results
show that this overhead is insignificant.

• Redundant Striping for Blackouts:

While the strategy described above reassigns data that falls
out of a pipe’s congestion window, it does not deal with the
one MSS worth of data (the first MSS in the congestion win-
dow) that will never fall out of the congestion window irre-
spective of the state of the pipe. Failure to deliver that one
MSS worth of data can potentially stall the entire aggregate
connection if the concerned pipe undergoes multiple time-
outs or suffers a blackout. Hence, pTCP redundantly stripes
the first MSS of data in a congestion window that has suf-
fered a timeout, onto another pipe. In doing so, the binding
of the data is changed to the new pipe, although the old pipe
has access to a copy of the same data. The reason for leav-
ing a copy behind instead of a regular reassignment is that
the old pipe will require at least one MSS worth of data to
send in order to recover. At the same time, providing it with
a new MSS worth of data is a potential pitfall because of the

������� �

� �
	���
���� � ���

������� � ������� � �

! �

"�#$�&%(' 	$) "
*��
��*,+ -

) . *0/���10' 	0) "�*0��1

� ��	0�
. ���
*,�&%$1

*0/
� �
%�2

3 465
78 3 9 : 4

;�: <&;�=>3 4?<�@9 ;
=BADC�: ;EC�:

*��&%$1F

��� � �
�
�&. � + �$-&)(� �
	>��
$�0� � �&�

� ��*$��GH�

. %$1�. %$I$*

��. � + �0-
)�*��&%$1F

��� � �&�

�J�K�F�L�
�M�F�N�

O�PLQ R S,T
U(R U>T0V

Figure 1: Overview of pTCP and Key Data Structures

chances of blocking, given that the pipe is experiencing se-
vere conditions.

• Selective Acknowledgments:

The pTCP design does not impose any requirements on the
design of the TCP-v protocol used by the individual pipes.
However, the use of TCP-SACK helps the performance of
pTCP under certain conditions. We present here an argu-
ment for why TCP-v in pTCP should preferentially use TCP-
SACK. When there are multiple losses within a congestion
window, TCP-Reno and TCP-NewReno will recover from
the losses at the rate of one loss per round-trip time. Thus, if
multiple losses occur within a congestion window of a pipe,
the time taken to recover from a loss farther down in the
congestion window increases. In default TCP, this is accept-
able as the alternative is to take a pessimistic attitude like in
TCP-Tahoe that by default treats all packets after a hole to
be lost, and hence starts retransmitting them. However, in
pTCP, such a delayed recovery can make the hole potentially
stall the entire aggregate connection. This makes the rate at
which loss recovery is done critical. When TCP-SACK is
used, loss recovery is done faster with multiple holes filled
within one round-trip time because of the SACK information
exchanged. This results in pTCP experiencing better perfor-
mance. Since TCP-SACK is preferred in a general Internet
setting [11], and more so in wireless environments to enable
faster recovery from random channel errors [16], we believe
that the recommendation for the use of SACK in pTCP is a
reasonable one.

4. THE PTCP PROTOCOL

4.1 Overview
Figure 1 provides an architectural overview of the pTCP ap-

proach. pTCP acts as the central engine that interacts with the
application, IP, and TCP-v respectively. For each interface used
by the application to achieve bandwidth aggregation, pTCP creates
and maintains one TCP-v pipe. We assume that the choice of the
number of interfaces to use is an external decision, and is con-
veyed to pTCP through a socket option. The figure also illustrates

the key data structures maintained for every aggregate connection.
pTCP controls and maintains the send and receive socket buffers
for the connection. Application data writes are served by pTCP,
and the data is copied onto the send buffer. A list of active
TCP-v pipes (that have space in the congestion window to trans-
mit) called active pipes is maintained by pTCP. A TCP-v pipe
is placed in active pipes initially when it is created by pTCP.
Upon the availability of data that needs to be transmitted, pTCP
sends a resume() command to the active TCP-v pipes. Once a
resume is issued to a pipe, the corresponding pipe is removed from
active pipes. A TCP-v pipe that receives the command builds
a regular TCP header based on its state variables and gives the seg-
ment (sans the data) to pTCP through the send() interface. pTCP
binds an unbound data segment in the send buffer to the header
of the “virtual” segment TCP-v has built, maintains the binding in
the data structure called bindings, appends its own header and
sends it to the IP layer. A resumed TCP-v continues to issue send()
calls till there is no more space left in the congestion window, or
pTCP responds back with a NO DATA return value to freeze the
concerned pipe (note that the TCP-v pipe needs to perform a few
rollback operations to account for the unsuccessful transmission).
When pTCP receives a send() call, and has no unbound data left,
it returns a NO DATA value, and adds the corresponding pipe to
active pipes.

When pTCP receives an ACK, it strips the pTCP header, and
hands over the packet to the appropriate TCP-v pipe (through the
receive() interface). The correct TCP-v pipe is recognizable from
the TCP 4-tuple. The TCP-v pipe processes the ACK in the reg-
ular fashion, and updates its state variables including the virtual
send buffer. The virtual buffer can be thought of as a list of seg-
ments that have only appropriate header information. The virtual
send and receive buffers are required to ensure regular TCP se-
mantics for congestion control and connection management within
each TCP-v pipe. The pTCP header carries cumulative pTCP level
ACK information that pTCP uses to purge its receive buffer if re-
quired. When an incoming data segment is received by pTCP, it
strips both the pTCP header and the data, enqueues the data in
the recv buffer, and provides the appropriate TCP-v with only
the skeleton segment that does not contain any data. TCP-v treats
the segment as a regular segment except that no application data is
queued in the virtual receive buffer.

In the rest of the section, we describe the different components
of the pTCP protocol including interfaces with TCP-v, header for-
mats, connection management, and congestion and flow control.

4.2 TCP-v Interface
As seen in Figure 1 the following eight functions act as the inter-

face between pTCP and TCP-v: open(), close(), established(),
closed(), receive(), send(), resume(), and shrunk(). pTCP
uses the open() and close() calls as inputs to the TCP-v state ma-
chine for opening and closing a TCP-v pipe respectively. TCP-
v uses the established() and closed() interfaces to inform pTCP
when its state machine reaches the ESTABLISHED and CLOSED
states respectively [22]. The send() call is used by TCP-v to send
“virtual” segments to pTCP which will then bind the segments to
real data. The receive() interface on the other hand is used by
pTCP to deliver “virtual” segments to TCP-v. pTCP uses resume()
to inform TCP-v that additional unbound data is available. TCP-v,
upon receiving the call, attempts to send as much data as possible
till it gets a NO DATA return value on its send() call and freezes.
Finally, TCP-v uses the shrunk() interface to inform pTCP of any
change in its congestion window so that pTCP can perform reas-
signment as described in Section 3.

������� ���
	 ����
�� � � � ����� ��������� ������� �
���� � ��
�	 ����
�� � � � ����� ��� �"!��
$ %&$ ' (�$

() *,+ - .

����/�����
����102��354������ ��� 6"72�

8 ��9�
���:5; ����<���3=��
���0 ��314����>� ��8��@?��

02��354���������!�A5B�� �����5�
�!�A�� 02��3C4�����������A5B�� �����=�
���A��

	 B
8������ �����CD

	 B
8������ �����FE

� ��<���; ����� � ��; ���

��A�� � �5� � ��; ���F� ���
����
�
����G� � ��

����� ��4�; � ��H�35��
��

I I I

Figure 2: pTCP Header Format

4.3 Header Formats
Figure 2 presents the header formats for the pTCP protocol. Note

that the header is in addition to the regular TCP header that will be
used by TCP-v. The regular pTCP header consists of the following
four fields: (i) source connection identifier (pSRC), (ii) destina-
tion connection identifier (pDST), (iii) pTCP sequence number
(pSEQ), and (iv) pTCP acknowledgement number (pACK). The
connection identifiers are used to uniquely identify the aggregate
pTCP connection at both ends. The pSEQ is the sequence num-
ber at the aggregate connection level and is independent of the TCP
sequence number. The pACK is a cumulative acknowledgement
similar to the TCP acknowledgement field. Since the individual
TCP-v pipes will use the TCP ACK fields to perform congestion
control (recall that congestion control and loss recovery are coupled
in TCP), they cannot be reused by pTCP. Because pTCP is respon-
sible for performing flow control (given that it controls the buffer),
it requires a field for window advertisement as in TCP. However,
since TCP-v pipes do not have to perform flow control (they merely
maintain virtual buffers), pTCP reuses and overrides the TCP win-
dow advertisement field for performing flow control. The reuse
does not interfere with the progress of the individual TCP-v pipes
due to the fact that the pTCP advertised window will always be
greater than the actual window of an individual pipe (we elaborate
on this in Section 4.5).

In addition to the regular pTCP header fields, the header format
for the connection establishment phase is further augmented with
the following fields: (i) number of transmitting interfaces to be de-
sirably used (nTx), (ii) number of receiving interfaces that can be
used (nRx), (iii) list of IP addresses corresponding to nTx (ipTx),
and (iv) list of IP addresses corresponding to nRx (ipRx). The
nTx field is the number of interfaces the source would ideally like
to use for its transmissions (which in effect will require nTx pipes
to be maintained at both ends), and the nRx field is the maximum
number of interfaces on which the source is willing to serve the
reverse path. Note that even if nRx is 1 at one end, the other end
can still use multiple interfaces, but all pipes will terminate in the
one interface at this end. (This would be the typical setup when a
multi-homed mobile host communicates with an Internet backbone
host that has only one interface.)

4.4 Connection Management
We use the state machine of pTCP and the connection establish-

ment handshake presented in Figure 3 and Figure 4 respectively for
the following discussions. Note that the state machine for TCP-v
is the same as that of default TCP, and the interface between pTCP
and TCP-v is presented in Section 4.2. We assume the number of
interfaces to be nIF at both ends.

J=K�L5M&N2O

N"M P>QFR K�S M&TVUVQ=S P

N�M�P>QFR2K�S M@T@N�OXW Y�Z

J=K�L5M&N[U[Q=S PVW \@Z

]5^�_F`@a
b�c�d&e�f g�h�i j k l,m n o&p

_�q�a�r
b�c�d2e�f g�h�k s�m t�n o u�v@wyx�z {5p

c�d2e�f g�|G} h�m l ~ �,�Gj � l ��m ��n o
bG�FwF�F�y�@p

c�d2e�f g�h>m l ~ �,��j � l ��m���n o
b�c�d&e�f g�� � � � � � �>k s�m t�n o�u��Fw��&p

� w�w5�

c�d@e�f g��2i j k�l�m ��n o
b � w � f"�&p

]=^�_5`@a
b�c�d2e�f g�h � � � |�i j k l,m,n o u � w=�Fp

Figure 3: pTCP State Machine

• Establishment:

When an active open is issued by the client application, a
pTCP socket with a transmission control block (TCB) simi-
lar to TCP’s TCB, but with the additional state variables in-
troduced earlier in Section 4.1, is created. After the pTCP
socket is created, pTCP creates one TCP-v TCB and issues
the open() call to it. When the TCP-v SY N packet is sent
out, pTCP sets nIF in the nTx field and the corresponding
IP addresses in ipTx, and appends additional pTCP connec-
tion management header information to the packet. When the
pTCP at the server end receives the passive open, it checks to
see if it is willing to support nIF TCP-v pipes.3 Assuming
that the receiver can support the required number of pipes, it
creates the first TCP-v TCB, issues the passive open to it, and
in the process takes it to the SYN RCVD state [22]. When
the SY N +ACK is sent out by the first TCP-v at the server
end, the destination IP address is appropriately set based on
the information received in the first SY N , and the source
address reflects the local host interface the first TCP-v pipe
is bound to. The SY N + ACK message carries nIF in
the nRx field that the server has agreed to support, and the
corresponding IP addresses in ipRx.

When the client pTCP receives the SY N +ACK, it creates
the remaining nIF −1 TCP-v TCBs and issues open() calls
to each of them. Also, the first TCP-v pipe at this stage enters
the ESTABLISHED state after sending back an ACK to the
server. pTCP thus goes into the ESTABLISHED (1) state
and can start accepting data from the application. Hence,
even if some of the pipes are experiencing connection setup
problems, pTCP will still ensure data flow between the client
and the server.

The source IP address of each of the outgoing SY Ns is set
to the local interface the TCP-v pipe is bound to. The desti-
nation address is set to one of the addresses in ipRx in the
SY N + ACK sent from the server. When the first TCP-v

3There might be several reasons including memory or processor
limitations, security considerations, etc., because of which the re-
ceiving host might desire to limit the number of pipes.

��� � ����� 	���
 ����

��������
���� ���

� ����������� �

� � � � ��� � ���
��� � ����� � � ����
! �
�������� � �
��
��� � ����� � �� �����"

��� ��� � �����
��� � ����� � � ����

Figure 4: Connection Establishment Handshake

pipe at the server receives the ACK, it enters the ESTAB-
LISHED state and can thus participate in the data exchange
with the client. The pTCP at the server end also enters the
ESTABLISHED (1) state. When the server receives the
SY N messages from each of the remaining nIF −1 TCP-v
pipes, it creates the corresponding TCP-v TCBs and assigns
the respective SY Ns to the TCBs, taking each of them to the
SYN RCVD state. From there on, the exchange of informa-
tion between each server TCB and the corresponding client
TCB is similar to that of TCP.

As and when each of the individual TCP-v pipes enter the
ESTABLISHED state, they issue the established() call to
pTCP making pTCP move down the state machine shown in
Figure 3. Finally, when all the individual pipes enter the ES-
TABLISHED state, pTCP enters the ESTABLISHED (nIF)
state.

• Termination:

The teardown of a pTCP connection is relatively simpler than
the connection establishment. When an application closes
the connection, pTCP uses the close() interface to make the
individual TCP-v pipes close. Each pipe closes using TCP’s
regular closing handshake. When a TCP-v pipe enters the
CLOSED state in its state machine, it invokes the closed()
callback to pTCP. For every closed() message pTCP receives,
it moves down the pTCP state machine. Upon successful
completion of all TCP-v pipes, pTCP enters the CLOSED
state of Figure 3 and confirms the close to the application
layer.

4.5 Congestion Control and Flow Control
pTCP by itself does not perform any congestion control. The

individual TCP-v pipes are solely responsible for controlling the
amount of data transferred through each pipe. On the other hand,
flow control in pTCP is performed at the pTCP layer. While the
primary reason is the fact that pTCP has control over the receive
buffer, it also helps in better utilization of the buffer across the mul-
tiple pipes. For example, in the case of the simple application layer
approach, irrespective of the bandwidth-delay product (BDP) of the
individual TCP pipes, each pipe would have a constant buffer (of
64KB by default). This will result in wastage of buffer space for
pipes with smaller BDPs and wastage of capacity for pipes with
larger BDPs. However, in pTCP the buffer space will be shared by
the individual pipes based on their respective BDPs. Note that this

$

%'&)(+*�,.- *+/ 0 $2143 &�5 6�- / / 1)7 8�9�:+:

%'&)(+*�,.- *+/ 0 $2143 &�5 6�- / / 1)7 8�9�:+:

%'&)(+*�,.- *+/ 0 $2143 &�5 6�- / / 1)7 8�9�:+:

Figure 5: Network Topology

property can also be achieved using some approaches proposed in
related work [14].

The buffer space (both send and receive) available at the pTCP
layer is assumed to be n ∗ B, where n is the number of TCP-v
pipes, and B is the default TCP buffer size. Every segment that
belongs to a pTCP connection always carries the available space in
the pTCP receive buffer, irrespective of which pipe it belongs to.
The pTCP sender keeps track of the number of outstanding bytes
for the connection, and ensures that the receive buffer never over-
flows. Although all individual TCP-v pipes see the same available
buffer space and hence can contend simultaneously for that space
(provided there is space in their congestion windows), since pTCP
has control over all data transmissions, it prevents any excess data
from being transmitted. For example, consider a scenario in which
the receiver has advertised a window size of 1000 bytes. Assuming
that there exist three TCP-v pipes at the sender and each of them has
1000 bytes space left in the congestion window, each of the pipes
will attempt to transmit 1000 bytes worth of data. However, except
for the first pipe that succeeds in transmitting the 1000 bytes, the
other pipes would have a NO DATA value returned for their send()
calls since pTCP would be aware of the global situation.

We have thus far described the key components of the pTCP
protocol. In the next section, we present performance evaluation
results for the pTCP protocol comparing it with the performance of
simple and sophisticated application layer techniques.

5. PERFORMANCE EVALUATION

5.1 Simulation Model
We use the ns2 [15] network simulator and the generic topology

shown in Figure 5 for all our simulations. We emulate the end-to-
end path from the multi-homed mobile host (S) to the destination
(D) through our custom bandwidth, delay, jitter, and loss modules
added to the link object in ns2. Since we assume the bottleneck
to be in the wireless link, we do not explicitly use a sophisticated
backbone topology in the simulations. However, we introduce vari-
ations in the delay and jitter modules to capture the variations that
connections would be expect to observe. We use three primary
types of links in most of our simulations: (i) links with bandwidths
ranging from 500Kbps to 5Mbps and a round-trip time of 100ms
- representative of a connection through a WLAN, (ii) links with
a bandwidth of 2Mbps and a round-trip time of 400ms - represen-
tative of a connection through a WWAN pico-cell, and (iii) links
with a bandwidth of 500Kbps and a round-trip time of 400ms - rep-
resentative of a connection through a WWAN macro-cell. Packet
loss rates from 0.001% to 1% are used in the simulations, and we
identify the specific link characteristics used in simulations as we
present the different results. We use the TCP-SACK implementa-
tion for the transport layer by default. We use two application layer
techniques in our comparisons: an “unaware” approach identical to

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t (

M
bp

s)

Bandwidth Ratio

Ideal (Throughput Sum)
pTCP
Smart Application
Unaware Application
Unaware Application (No Wnd Update)

(a) Throughput vs. Bandwidth Ratio

0

2

4

6

8

10

12

14

35 36 37 38 39 40

T
C

P
 S

eq
ue

nc
e

N
um

be
r

(x
10

00
)

Time (sec)

WLAN Link (pTCP)
WLAN Link (Unaware Application)
WWAN Link (Both)

(b) Sequence Number Progression (Ratio = 5)

Figure 6: Scalability with Rate Differential

the one described in Section 2, and a “smart” approach that uses
a striping ratio based on the average bandwidths of the different
links. pTCP is implemented as a wrapper around TCP-SACK as
explained in Section 4. We also present the “ideal” performance
of bandwidth aggregation by using multiple applications (one ap-
plication and one socket for each link) and summing the respective
throughputs. We explicitly introduce CBR traffic over UDP as the
background traffic when necessary. All packet sizes are set to 1KB.
Simulations are run for a period of 600 seconds, and are averaged
over 10 samples when randomness is introduced.

We measure throughput (both aggregate and instantaneous) as
the metric in our comparisons. We also present the TCP sequence
number progression of a connection where appropriate. We present
the following results in the rest of the section: (i) scalability with
respect to rate differential, (ii) scalability with respect to the num-
ber of interfaces, (iii) resilience to rate fluctuations, (iv) resilience
to blackouts, and (v) co-existence of different congestion control
schemes.

5.2 Simulation Results

5.2.1 Rate Differential
In this section, we use the topology in Figure 5 with two active

links between the source and the destination. We fix the bandwidth
of one of the links to 500Kbps, and increase the bandwidth of the
other link from 500Kbps to 5Mbps in increments of 500Kbps. The
round-trip time is fixed as 400ms for the first link, and 100ms for

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9 10

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Links

Ideal (Throughput Sum)
pTCP
Smart Application
Unaware Application

Figure 7: Scalability with Multiple Links

the second. While the first link is representative of a WWAN link,
the second link is representative of a WLAN link. For each value
of the bandwidth for the second link, we monitor the throughput
performance of pTCP, smart application, and unaware application.
For reference, we also plot the ideal aggregate throughput curve.
We present the aggregate throughput results in Figure 6(a). The x-
axis value represents the ratio of the bandwidth of the second link
to that of the first. It can be observed that while pTCP and the smart
application achieve near ideal performance, the unaware approach
performs significantly worse and exhibits a non-increasing aggre-
gate throughput beyond a ratio of 2. We also simulate the scenario
when the window update from the TCP receiver is lost. The send-
ing TCP of the faster pipe thus enters persist mode which in turns
causes the slower pipe to do the same. As shown in the figure,
the result is that the aggregate throughput is lower than that of the
slowest pipe as explained in Section 2.

The non-performance of the unaware application, while explained
in Section 2, is further illustrated by the results presented in Figure
6(b), where the sequence number progression is shown during a
small time window for two pipes with bandwidth ratio of 5. For
reference, we also present the case for pTCP. It can be observed
that in the unaware application, the head-of-line blocking at the re-
ceiver due to the slower pipe stalls the faster pipe. The faster pipe
in Figure 6(b) thus exhibits distinct idle periods (e.g. 36.5s to 38s),
that results in the degraded performance of the unaware applica-
tion. In contrast, the results for pTCP for the same scenario ex-
hibits a smooth flow of transmissions through the faster pipe. This
is attributed to the congestion window based assignment strategy
adopted by pTCP.

5.2.2 Number of Links
For results in this section, we use the topology in Figure 5, and

consider the performance of pTCP and the other approaches as the
number of links is increased from 2 to 10. For a scenario with i

links, we fix the bandwidth of the first link to 500Kbps, the band-
width of the second link to 5Mbps, and the bandwidths of the re-
maining links to values between 500Kbps and 5Mbps randomly
chosen. Figure 7 presents the aggregate throughput enjoyed by
the application using different striping techniques as the number
of links is increased. Since randomness is introduced in the form
of the variable link bandwidth assignment, we use averages over 10
scenarios for this result. It can be observed that the performance of
pTCP scales well with increasing number of links, while the perfor-
mance of the unaware application does not. Note that the through-
put degradation observed in the smart application as the number

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600

In
st

an
ta

ne
ou

s
T

hr
ou

gh
pu

t (
x1

0
pa

ck
et

s/
se

c)

Time (sec)

pTCP (with Reassignment)
pTCP (without Reassignment)

(a) Effect of Dynamic Reassignment

0

3

6

9

12

15

18

2 3 4 5 6 7 8 9 10

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Links (with Bandwidth Fluctuations)

Ideal (Throughput Sum)
pTCP
Smart Application
Unaware Application

(b) Throughput vs. Number of Links

Figure 8: Impact of Fluctuations

of links increases is in fact due to the particular implementation
used. Since the smart application always stripes data across mul-
tiple pipes based on the bandwidth ratio of the underlying links
(the minimum striping unit is one packet), any short-term unfair-
ness exhibited in individual pipes will decrease the effectiveness
of the algorithm. As the number of links increases, such short-
term unfairness occur more frequently (the periodic TCP probing
losses on each link contribute to the unfairness), thus degrading the
aggregate throughput enjoyed by the smart application. While we
acknowledge that a more sophisticated implementation of the smart
application could conceivably be used to solve the problem, its per-
formance will degrade further due to other reasons as shown in the
next sections.

5.2.3 Rate Fluctuations
Since the characteristics of wireless links exhibit high variances

in bandwidths and delays, in this section, we investigate the per-
formance of pTCP in the presence of fluctuations in the available
capacity of individual pipes. We show that pTCP’s dynamic re-
assignment design element is effective in addressing the capacity
fluctuations, and compare the performance of pTCP with other ap-
proaches.

We first consider the topology in Figure 5 with two links. One
of the links is fixed at a bandwidth of 5Mbps and a round-trip
time of 100ms, while the bandwidth of the other link is initially
set to 2Mbps and a round-trip time of 400ms. A square-wave
CBR flow with a period of t and an amplitude of 1.5Mbps is used

as background traffic, to cause the fluctuation on the second link.
Hence, the available bandwidth for the second link fluctuates be-
tween 0.5Mbps and 2Mbps, with a period of t seconds. While the
fluctuations are caused by varying the CBR background load on the
appropriate links, they are representative of both congestion based
rate changes, and wireless channel condition based rate changes.
The result shown in Figure 8(a) is obtained using t = 200 seconds.
We use the number of packets delivered to the application (over a
20-second time-window) as the instantaneous throughput and com-
pare the performance of pTCP with and without dynamic reassign-
ment. It is clear from the figure that with dynamic reassignment
pTCP is able to perform well under bandwidth fluctuations.

In Figure 8(b) we compare the performance of different striping
techniques using the multi-link topology used in Section 5.2.2.
However, the bandwidth of each link now randomly fluctuates (ev-
ery 1 second) between 20% and 100% of the normal value. For ex-
ample, for a link with capacity of 5Mbps, the available bandwidth
that the application can use randomly fluctuates between 1Mbps
and 5Mbps throughout the simulation. The average bandwidth is
thus 60% of the link capacity. We observe that even under such
a dynamic environment, the performance of pTCP still closely fol-
lows that of the ideal performance. However, this is not the case for
the smart and unaware applications. The scenario is appropriate for
demonstrating the inefficacy of even a smart application layer ap-
proach that does some rate estimation. Its performance will suffer
as long as its rate estimation is coarser than the actual fluctuations.
Although the smart application can eventually adapt to the changed
rate, it cannot do anything about packets already in the pipe that
has now slowed down.

5.2.4 Blackouts
In this section, we show the impact of blackouts on the perfor-

mance of pTCP and application striping techniques. We use the
same two link topology used in the previous sections, but introduce
a long (25 seconds) blackout between 25s and 50s when the avail-
able bandwidth on the WWAN link (2Mbps) decreases to zero. All
packets transmitted through the WWAN link during the blackout
period are dropped. Figure 9(a) shows the sequence number pro-
gression for the smart application on both the WLAN and WWAN
pipes. While it is obvious that the WWAN link stops sending data
during the blackout period, because of the head-of-line blocking
problem described in Section 2, even the WLAN link stalls for most
of the blackout period, resulting in the aggregate connection com-
ing to a standstill. On the other hand, as seen in Figure 9(b), in
pTCP, although the WWAN link stalls during the blackout period,
the WLAN link continues to progress after a minor stall. This is
possible because of the redundant striping policy in pTCP that re-
assigns even the first segment within the congestion window of the
WWAN pipe to the WLAN pipe and prevents the latter from expe-
riencing head-of-line blocking.

5.2.5 Different Congestion Control Schemes
In this section, we demonstrate the ability of the pTCP protocol

to use two different congestion control schemes within the same ag-
gregate connection. We consider the two link topology again with
bandwidths of 5Mbps (WLAN) and 2Mbps (WWAN), and round-
trip times of 100ms and 400ms respectively. A loss module is in-
serted on the WWAN link. The module inserts losses at packet er-
ror rates ranging from 0.001% to 1%. We consider the performance
of pTCP when the WLAN link uses regular TCP, and the WWAN
link uses TCP-ELN [3]. TCP-ELN receives explicit loss notifica-
tion from the underlying link layer when a packet is dropped due
to random wireless loss, and does not react to such losses. Note

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

T
C

P
 S

eq
ue

nc
e

N
um

be
r

(x
10

00
)

Time (sec)

WLAN Link
WWAN Link

(a) Smart Application during Blackouts

0

10

20

30

40

50

60

0 10 20 30 40 50 60 70 80 90 100

T
C

P
-v

 S
eq

ue
nc

e
N

um
be

r
(x

10
00

)

Time (sec)

WLAN Link
WWAN Link

(b) pTCP during Blackouts

Figure 9: Impact of Blackouts

that it is not the sophistication of the transport protocol used that is
of key importance, but the ability of the pTCP approach to accom-
modate two different congestion control schemes within the same
framework. Figure 10 presents the throughput performance results
for pTCP, the smart application using either TCP or TCP-ELN on
both links, and the ideal performance (sum of the throughputs of
an independent TCP-ELN connection over the WWAN link and an
independent TCP connection over the WLAN link). It can be seen
that pTCP achieves almost the maximum achievable performance,
illustrating the seamless nature in which pTCP allows the two con-
gestion control schemes to co-exist.

6. ISSUES AND DISCUSSION
In this section we discuss some issues with the pTCP design.

• Congestion Window and Bandwidth-Delay Product:

One of the key assumptions made by pTCP when it performs
congestion window based striping is that the congestion win-
dow is a tight approximation of the available bandwidth-delay
product. However, this might not always be true. For exam-
ple, deep buffering in the network can artificially inflate the
congestion window to much larger than the true bandwidth-
delay product of a connection. One plausible solution to
this problem is to complement the basic congestion control
scheme in TCP-v with mechanisms that help estimate the
BDP more accurately. For example, if the rate of incom-
ing ACKs for a particular pipe is monitored to keep track of

0

1

2

3

4

5

6

7

1e-05 0.0001 0.001 0.01

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t (

M
bp

s)

Packet Drop Probability (WWAN Link)

Ideal: TCP(WLAN) + ELN(WWAN)
pTCP: TCP(WLAN) + ELN(WWAN)
Smart Application: ELN(WLAN) + ELN(WWAN)
Smart Application: TCP(WLAN) + TCP(WWAN)

Figure 10: Multiple Congestion Control Schemes in pTCP

the available rate, once the sending rate of the pipe exceeds
the BDP, the rate of incoming ACKs will hit a plateau. pTCP
thus can use this as an indication to cap the amount of data
assigned to that pipe. Note that since pTCP is implemented
as a transport layer approach, it has easier access to the states
of TCP than a higher layer approach does. Our current work
involves studying this problem more closely.

• TCP Friendliness:

An important consideration when using multiple interfaces
and bandwidth aggregation is how the aggregation plays a
role in the TCP friendliness of the connection. Can it happen
that in performing the aggregation the end-to-end connection
loses its TCP friendly nature? If the assumption made ear-
lier in the paper that the bottlenecks are solely in the wireless
domain were true, this would not be an issue. However, if
the bottlenecks happen to be in the wired domain, it is pos-
sible that multiple TCP-v pipes share a single bottleneck in
the wired domain and make the aggregate pTCP connection
more aggressive than a single regular TCP connection. There
are two possible solutions to this problem: (i) Recent works
have proposed schemes to heuristically determine if connec-
tions share the same bottleneck by monitoring the packet loss
patterns and inter-arrival times [13]. If it can thus be inferred
that two TCP-v pipes are sharing the same bottleneck link,
approaches like [4] can then be employed to take care that
the aggregate behavior of the two TCP-v pipes mimics that
of a single regular TCP connection. (ii) Another approach
that we have extensively explored in a different context is to
use a variant of TCP-Vegas. TCP-Vegas by itself has been
shown to be subservient to TCP-Reno and TCP-NewReno
flows. A more subservient variant of TCP-Vegas (where the
congestion window is reset to one upon detection of consis-
tent increase in the history of round-trip times maintained)
can be made to use only bandwidth given up by other Reno or
NewReno flows. Therefore, in pTCP while one TCP-v pipe
would use a Reno or a NewReno congestion control scheme,
the other pipes would use a variant of the TCP-Vegas con-
gestion control algorithm, thus lessening the TCP unfriendly
effect when multiple TCP-v pipes share the same bottleneck.

• Backward Compatibility:

In this paper, we have made an assumption that both the
sender and the receiver are pTCP aware. We believe this
assumption to be reasonable under scenarios where mobile

users predominantly communicate with proxies that are al-
ready mobile-host aware. However, when the mobile hosts
communicate with static hosts that can be potentially un-
aware, the problem can be handled just like it is handled in
other protocols such as TCP-SACK or when the timestamp
option is used in TCP. When the SYN packet is sent to start
the connection, the option is enabled. If the other end replies
with the same option, “awareness” is inferred and the respec-
tive protocol is used. However, if the other end replies with-
out the option, normal TCP operation resumes. Since pTCP
headers and connection establishment handshakes can be im-
plemented through TCP options in the first place, using such
“pTCP PERMITTED” techniques seems to be a realistic so-
lution to ensure correct operations when a pTCP aware host
communicates with a pTCP unaware host.

• Handoffs:

While we do not consider handoffs explicitly in the paper,
note that the handoff experienced by an individual TCP-v
connection can be handled in the default manner it would
have been handled if it were the only pipe used by the appli-
cation. In fact, the use of pTCP ensures that even if stalls are
caused in one pipe due to handoffs, the other pipes remain
unaffected. Moreover, soft handoff can be easily achieved
(where the mobile host is connected to multiple access points
in the intersection of their coverage areas) using pTCP over
the two pipes established to the two access points during
handoffs.

• Complexity:

There are two sources of complexity in pTCP that can cause
potential problems: (i) The creation and maintenance of mul-
tiple TCB states can be a drain on the end-host’s resources.
pTCP’s connection establishment phase addresses this prob-
lem by allowing the end-host to accept requests for an aggre-
gate connection by specifying a limit on the number of pipes
that it can support. (ii) The overheads incurred by the buffer
management at pTCP and individual TCP-v pipes. How-
ever, in pTCP the manipulation of the socket buffer incurs
the same overhead as the buffer management mechanisms
in a regular TCP socket. The only additional overheads oc-
cur when packets are unbound following a congestion win-
dow reduction. In this case, the unbound packets need to be
re-inserted into the unsent list sorted according to sequence
numbers. We are currently investigating efficient data struc-
tures that can reduce the overheads incurred when the re-
insertion is performed.

7. RELATED WORK
We classify related work based on whether the proposed ap-

proaches to achieve bandwidth aggregation are performed at the
application layer, transport layer, or link layer.

• Application Layer Techniques:

Several approaches have been proposed to use multiple TCP
connections in parallel to provide higher throughput to the
application. For example, in [17] the authors develop the
PSockets library used to stripe data over multiple TCP sock-
ets for a better utilization of the network bandwidth, while
avoiding the time-consuming process of manually tuning the
TCP buffer size. In [2] the authors develop a new application
called XFTP that uses multiple TCP connections to over-
come the limitation of TCP window size in long-fat links

such as satellite links. Similarly, in [9] an extension of the
FTP protocol called GridFTP is developed for bulk data trans-
fer where parallel TCP connections are used to increase the
throughput in a bottleneck link. In [7], the authors character-
ize and substantiate the performance improvement of an ag-
gregate connection that uses parallel TCP connections over
the same path. Note that this class of related work deals with
using multiple TCP connections over the same path. We dis-
cuss in Section 2 the pitfalls of such approaches when used
in the context of multi-homed mobile hosts.

• Transport Layer Techniques:

The Stream Control Transmission Protocol (SCTP) is a re-
liable transport protocol that was designed for the transport
of message-based signaling information across IP-based net-
works [20]. One salient feature of SCTP is the support for
multi-streaming and multi-homing. A SCTP connection can
consist of multiple data streams across one or multiple in-
terfaces. SCTP provides reliable in-sequence delivery within
each data stream, but it does not provide a total ordering
across the data streams. Although the head-of-line block-
ing among different data streams is thus avoided in SCTP,
it cannot provide bandwidth aggregation as pTCP does. If
a SCTP user is to stripe data across multiple data streams,
it must handle packet resequencing itself. Another distinct
difference between SCTP and pTCP lies in the congestion
control mechanism. Multiple data streams within the same
SCTP connection are subject to one common flow and con-
gestion control mechanism. In the context of multi-homed
mobile hosts where different data streams traverse through
vastly differing wireless links and heterogeneous access net-
works, such design unnecessary leads to bandwidth under-
utilization for the aggregate connection. The Reliable Mul-
tiplexing Transport Protocol (RMTP) is a rate-based trans-
port layer approach that is specifically designed to aggregate
bandwidths on multi-homed mobile hosts [10]. Although
RMTP targets the same scenario as pTCP does, it differs
from pTCP in several ways: (i) RMTP performs explicit
bandwidth based striping. The available bandwidth of the
underlying pipe is estimated by periodically sending packet-
pair probes. The effectiveness of RMTP thus greatly de-
pends on the accuracy of the bandwidth estimation. How-
ever, the bandwidth probing rate limits how fast it can de-
tect and adapt to bandwidth fluctuations. When bandwidth
fluctuations occur at a time-scale smaller than the bandwidth
probing period, RMTP will exhibit the same problem as the
smart application does shown in Section 5. (ii) The RMTP
design does not explicitly address the interaction between
component pipes of the aggregate connection as pTCP does
through delayed binding, dynamic reassignment and redun-
dant striping. We show in earlier sections that these de-
sign components play an important role in achieving effec-
tive bandwidth aggregation on multi-homed mobile hosts.
(iii) Finally, RMTP does not provide interfaces allowing the
flexible inclusion of different congestion control mechanisms
optimized for different wireless links.

• Link Layer Techniques:

As mentioned in Section 1, conventional link layer striping
techniques do not perform well in the context of multi-homed
mobile hosts, where the multiple interfaces are more likely
to belong to different network domains altogether. An ideal
striping algorithm not only has to deal with a highly dy-

namic and vastly differing set of wireless links, but also has
to address fluctuations in capacity caused by the end-to-end
multi-hop nature of the paths. In [1], the authors propose a
“channel” striping algorithm where the channel is defined as
a logical FIFO path at any protocol layer. The authors show
that the striping (load sharing) algorithm is in fact the re-
verse of the fair queueing algorithm. By reversing the direc-
tion of packet flow in the fair queueing algorithm, the sender
can achieve optimal load sharing across channels of different
capacities. If the receiver is running the same fair queue-
ing algorithm used at the sender and no packets are lost, in-
sequence delivery can be achieved. Although this algorithm
is presented as a generic approach for striping over any log-
ical channel including the transport layer, due to the nature
of the fair queueing algorithm the capacity of each channel
must be known a priori at both ends. Moreover, the states of
the algorithms at both ends must be synchronized to ensure
in-sequence delivery. However, packet losses cause loss of
synchronization between the sender and the receiver. Hence
the algorithm has to periodically insert “marker” packets into
the channels to achieve resynchronization. Nonetheless, in
wireless environments with high loss rates, even the marker
packets may get lost, resulting in degrading the performance
of the striping algorithm and potentially delivering packets
out-of-order to the application. Fluctuations in channel ca-
pacity further limit the applicability of this approach in the
targeted environment.

8. CONCLUSIONS
In this paper, we consider the problem of using multiple inter-

faces on a mobile host to provide aggregate bandwidths to ap-
plications. Since the multiple interfaces can potentially and will
most likely belong to different wireless network domains, link layer
striping schemes cannot be use to achieve bandwidth aggregation.
At the same time, we show that application layer techniques using
default TCP sockets do not scale well when the link characteristics
are different and fluctuating. In this context, we propose a transport
layer approach called pTCP that achieves bandwidth aggregation
using a combination of mechanisms including: (i) decoupled con-
gestion control and reliability, (ii) congestion window based strip-
ing, (iii) dynamic window reassignment, (iv) redundant striping to
handle blackouts, and (v) support for different congestion control
schemes to co-exist within a single transport layer framework. We
show through simulations that pTCP achieves bandwidth aggrega-
tion efficiently under a variety of network conditions.

9. REFERENCES
[1] H. Adiseshu, G. Parulkar, and G. Varghese. A reliable and

scalable striping protocol. In Proceedings of ACM
SIGCOMM, Palo Alto, CA USA, Aug. 1996.

[2] M. Allman, H. Kruse, and S. Ostermann. An
application-level solution to TCP’s satellite inefficiencies. In
Proceedings of Workshop on Satellite-Based Information
Services (WOSBIS), Rye, NY USA, Nov. 1996.

[3] H. Balakrishnan, V. Padmanabhan, S. Seshana, and R. Katz.
A comparison of mechanisms for improving TCP
performance over wireless links. IEEE/ACM Transactions on
Networking, 5(6):756–769, Dec. 1997.

[4] H. Balakrishnan, H. Rahul, and S. Seshan. An integrated
congestion management architecture for Internet host. In
Proceedings of ACM SIGCOMM, Boston, MA USA, Sept.
1999.

[5] H. Balakrishnan, S. Seshan, and R. Katz. Improving reliable
transport and handoff performance in cellular wireless
networks. ACM Wireless Networks, 1(4):469–481, Dec.
1995.

[6] J. Duncanson. Inverse multiplexing. IEEE Communications
Magazine, 32(4):34–41, Apr. 1994.

[7] T. Hacker and B. Athey. The end-to-end performance effects
of parallel TCP sockets on a lossy wide-area network. In
Proceedings of IEEE IPDPS, Fort Lauderdale, FL USA, Apr.
2002.

[8] T. Henderson and R. Katz. Transport protocols for
Internet-compatible satellite networks. IEEE Journal on
Selected Areas in Communications (JSAC), 17(2):345–359,
Feb. 1999.

[9] J. Lee, D. Gunter, B. Tierney, B. Allcock, J. Bester,
J. Bresnahan, and S. Tuecke. Applied techniques for high
bandwidth data transfers across wide area networks. In
Proceedings of Computers in High Energy Physics (CHEP),
Beijing, China, Sept. 2001.

[10] L. Magalhaes and R. Kravets. Transport level mechanisms
for bandwidth aggregation on mobile hosts. In Proceedings
of IEEE ICNP, Riverside, CA USA, Nov. 2001.

[11] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP
selective acknowledgement options. IETF RFC 2018, Oct.
1996.

[12] J. Nagle. Congestion control in IP/TCP internetworks. In
IETF RFC 896, Jan. 1984.

[13] D. Rubenstein, J. Kurose, and D. Towsley. Detecting shared
congestion of flows via end-to-end measurement. In
Proceedings of ACM SIGMETRICS, Santa Clara, CA USA,
June 2000.

[14] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP buffer
tuning. In Proceedings of ACM SIGCOMM, Vancouver,
Canada, Sept. 1998.

[15] The Network Simulator. ns-2. http://www.isi.edu/nsnam/ns.
[16] P. Sinha, N. Venkitaraman, R. Sivakumar, and

V. Bharghavan. WTCP: A reliable transport protocol for
wireless wide-area networks. In Proceedings of ACM
MOBICOM, Seattle, WA USA, Aug. 1999.

[17] H. Sivakumar, S. Bailey, and R. Grossman. PSockets: The
case for application-level network striping for data intensive
applications using high speed wide area networks. In
Proceedings of IEEE Supercomputing (SC), Dallas, TX
USA, Nov. 2000.

[18] A. Snoeren. Adaptive inverse multiplexing for wide-area
wireless networks. In Proceedings of IEEE GLOBECOM,
Rio de Janeireo, Brazil, Dec. 1999.

[19] M. Stemm and R. Katz. Vertical handoffs in wireless overlay
networks. Mobile Networks and Applications, 3(4):335–350,
1998.

[20] R. Stewart et al. Stream control transmission protocol. IETF
RFC 2960, Oct. 2000.

[21] C. B. Traw and J. Smith. Striping within the network
subsystem. IEEE Network Magazine, 9(4):22–32, July 1995.

[22] G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume
2. Addison-Wesley Publishing Company, Reading, MA
USA, Oct. 1997.

