Performance Comparison of Cellular and Multi-hop Wireless Networks: A Quantitative Study

Hung-Yun Hsieh and Raghupathy Sivakumar The GNAN Research Group http://www.ece.gatech.edu/research/GNAN School of Electrical and Computer Engineering Georgia Institute of Technology June 19, 2001

Outline

- Introduction
- Performance comparisons
 - Simulation environment
 - Metrics
 - Results
- A hybrid wireless network modelConclusions

Wireless Data Networks

- Most wireless data networks are overlaid on cellular networks
- Channel data rate is limited
 - 3G wireless system
 - 144 kbps (outdoors/vehicle) 2 Mbps (indoors)
- Bandwidth is shared by many users
 - Per-user throughput goes down as 1/n

Ad-hoc Network Model

 Peer-to-peer communication provides better throughput because of spatial reuse [Gupta 2000, Lin 2000, Qiao 2000, Wu 2000]

Introduction

- Performance comparisons
 - Simulation environment
 - Metrics
 - Results
- A hybrid wireless network modelConclusions

Simulation Environment

- *ns-2* network simulator
- Physical layer
 - Single channel communication (2 Mbps)
 - Free space propagation and two-ray ground reflection channel models
- Medium access layer
 - Cellular model: IEEE 802.11 PCF (round-robin)
 - Ad-hoc model: IEEE 802.11 DCF / IFS / ILS
- Routing layer
 - Cellular model: no routing required
 - Ad-hoc model: DSR (dynamic source routing)

Simulation Environment

- Topology
 - 1500m by 1500m grid with randomly distributed nodes (50 – 400 nodes)
 - Transmission range
 - Cellular model: $750\sqrt{2}$ m
 - Ad-hoc model: variable (MIN to MAX)
- Mobility
 - Waypoint movement model
- Traffic generation
 - Every node acts as a CBR source with randomly chosen destination (light to heavy load)
 - Use TCP to transport CBR traffic

Metrics

- Network capacity
- End-to-end throughput
- End-to-end delay
- Power consumption
- Fairness
- Impact of mobility

Network Capacity

- Network capacity
 - Proportional to the number of simultaneous transmissions (spatial reuse) and channel data rate
 - Destination is one-hop away from the source
 - Upper bound for instantaneous traffic
 - Unfair MAC vs. fair MAC

Network capacity ~ O(Node number) = O(n)

Network Capacity

Network Capacity

End-to-end Throughput

- End-to-end throughput
 - Performance measurement for end-to-end connections (flows)
 - Average for all flows in the network

• E2E throughput ~ O(
$$\frac{\text{Network capacity}}{\text{Node num * Path length}}) = O(\frac{1}{\sqrt{n}})$$

- End-to-end throughput increases as the network capacity increases
- End-to-end throughput decreases as the number of hops increases

End-to-end Throughput

Mean of End-to-End Throughput (100 Nodes, Load = 64 Kbps)

End-to-end Delay

- End-to-end delay
 - Measurement of network latency
 - Measured at the peer TCP layers

- End-to-end delay decreases as the throughput increases
- End-to-end delay increases as the number of hops increases

End-to-end Delay

Mean of End-to-End Delay (100 Nodes, Load = 64 Kbps)

Power Consumption

- Power consumption
 - Average power consumption for all nodes in the network

• PC ~ O(Path length * Radius⁴) ~ O(
$$\frac{1}{n\sqrt{n}}$$
)

- Power consumption decreases as the transmission radius decreases
- Power consumption increases as the number of hops increases

Power Consumption

Mean of Power Consumption (MIN Transmission Power, Load = 64 Kbps)

Fairness

 Standard deviation of end-to-end throughput among all flows in the network

W

3

u

Ζ

Х

- Cellular network model
 - Round-robin polling ensures fairness
- Ad-hoc network model
 - Fairness is limited by network topology

Fairness

Standard Deviation of End-to-End Throughput (100 Nodes, Load = 64 Kbps)

Impact of Mobility

- Impact of mobility
 - Network failure is measured as the sum of path re-routes and network partitions

11

Σ

Х

- Cellular network model
 - No impact without mobility handoff
- Ad-hoc network model
 - Frequency of failures increases as transmission power decreases
 - Frequency of failures increases as mobility increases

Impact of Mobility

Number of Failures (Partitions + Path Re-routes) (%)

Throughput Degradation

- End-to-end throughput degradation
 - Network failures (due to mobility) reduce network throughput
- Route failures cause packet loss and stall TCP transmission
- Route recovery process consumes network bandwidth

Throughput Degradation

Mean of End-to-End Throughput (100 Nodes, Load = 50 Kbps)

Transmission Power

Summary

- Ad-hoc network model performs better than cellular network model in terms of
 - End-to-end throughput
 - End-to-end delay
 - Power consumption
- Ad-hoc network model shows undesirable performance in terms of
 - Unfairness
 - Impact of mobility

- Introduction
- Performance comparisons
 - Simulation environment
 - Metrics
 - Results
- A hybrid wireless network modelConclusions

- Objectives
 - Combine advantages of ad-hoc network model with that of cellular network model
 - Address the mobility problem
- Architecture
 - Use network infrastructure as a cellular network model does
 - Mobile devices by default operate in multi-hop mode (peer-to-peer communication)

- Algorithm
 - Use a separate control channel
 - Upstream: location information and the observed throughput
 - Downstream: transmission power level and the mode of operation
 - Two-stage adaptation scheme
 - Base station tells the mobile devices to increase transmission power if network is partitioned
 - Mobile devices switch to cellular mode if the throughput falls below the cellular mode

Mean of End-to-End Throughput (100 Nodes, Max Speed = 20 m/s)

- Issues
 - Unfairness
 - Traffic locality (destination out of the cell)
 - Adaptive transmission power
 - Ping-pong switching
 - Need for location information
 - Protocol complexity
 - Security, pricing and billing

Conclusions

- The performance trade-offs between the cellular and ad-hoc network model preclude the adoption of either as a clear solution for future wireless systems
- The proposed simple hybrid network model can combine advantages of both models and show better performance
- For more information, please go to http://www.ece.gatech.edu/research/GNAN